Stability Remarks on Discretized Multi-dimensional Diffusion Process Models and its Application to Model Reduction

This paper presents some stability remarks on the discretized diffusion process models. The motivation arises from our observation of stability preserving property in terms of a model reduction procedure of the 1D model. Before the stability analysis of the non-reduced order model, the state-space m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Shisutemu Seigyo Jouhou Gakkai rombunshi 2023-08, Vol.36 (8)
Hauptverfasser: Zhang, Weiqi, Hirata, Kentaro, Nakamura, Yukinori, Okano, Kunihisa
Format: Artikel
Sprache:jpn
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page
container_title Shisutemu Seigyo Jouhou Gakkai rombunshi
container_volume 36
creator Zhang, Weiqi
Hirata, Kentaro
Nakamura, Yukinori
Okano, Kunihisa
description This paper presents some stability remarks on the discretized diffusion process models. The motivation arises from our observation of stability preserving property in terms of a model reduction procedure of the 1D model. Before the stability analysis of the non-reduced order model, the state-space model is extended to multi-dimensional cases in a systematic manner. This formulation and the corresponding stability analysis are the first non-trivial contributions here. Then we clarify the fact behind the stability preserving property. As a consequence, one can employ arbitrary size of reduced order model based on the techniques such as the principal component analysis without any concern for the stability. The power of this reduction method is demonstrated via numerical examples for the 1D and 2D cases.
doi_str_mv 10.5687/iscie.36.279
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2901982292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901982292</sourcerecordid><originalsourceid>FETCH-LOGICAL-j1122-cc349656e1cd9f649c247cb4b839abf3dfb87038f407353c77eb4d34b4d02ecd3</originalsourceid><addsrcrecordid>eNotj8tKAzEUhoMoWGp3PkDA9dRJTiaXZamXCi2KF3BXcoXU6aROMgt9eqfUzX8O5zt88CN0Tep5w6W4jdlGPwc-p0KdoQklsqkkIZ_naEKA0arhXF6iWc7R1EAEIwSaCerfijaxjeUHv_q97r8yTh2-G2W9L_HXO7wZ2hIrF_e-yzF1uh1pCMNxxy99sj5nvEnOtxnrzuFYMl4cDm20uhxfSjrRUe8GezxdoYug2-xn_3OKPh7u35erav38-LRcrKsdIZRW1gJTvOGeWKcCZ8pSJqxhRoLSJoALRooaZGC1gAasEN4wB2yMmnrrYIpuTt5Dn74Hn8t2l4Z-LJC3VNVESUoVhT-WIF89</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901982292</pqid></control><display><type>article</type><title>Stability Remarks on Discretized Multi-dimensional Diffusion Process Models and its Application to Model Reduction</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>J-STAGE (Japan Science &amp; Technology Information Aggregator, Electronic) Freely Available Titles - Japanese</source><creator>Zhang, Weiqi ; Hirata, Kentaro ; Nakamura, Yukinori ; Okano, Kunihisa</creator><creatorcontrib>Zhang, Weiqi ; Hirata, Kentaro ; Nakamura, Yukinori ; Okano, Kunihisa</creatorcontrib><description>This paper presents some stability remarks on the discretized diffusion process models. The motivation arises from our observation of stability preserving property in terms of a model reduction procedure of the 1D model. Before the stability analysis of the non-reduced order model, the state-space model is extended to multi-dimensional cases in a systematic manner. This formulation and the corresponding stability analysis are the first non-trivial contributions here. Then we clarify the fact behind the stability preserving property. As a consequence, one can employ arbitrary size of reduced order model based on the techniques such as the principal component analysis without any concern for the stability. The power of this reduction method is demonstrated via numerical examples for the 1D and 2D cases.</description><identifier>ISSN: 1342-5668</identifier><identifier>EISSN: 2185-811X</identifier><identifier>DOI: 10.5687/iscie.36.279</identifier><language>jpn</language><publisher>Kyoto: Japan Science and Technology Agency</publisher><subject>Discretization ; Model reduction ; One dimensional models ; Principal components analysis ; Reduced order models ; Stability analysis ; State space models</subject><ispartof>Shisutemu Seigyo Jouhou Gakkai rombunshi, 2023-08, Vol.36 (8)</ispartof><rights>Copyright Japan Science and Technology Agency 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Zhang, Weiqi</creatorcontrib><creatorcontrib>Hirata, Kentaro</creatorcontrib><creatorcontrib>Nakamura, Yukinori</creatorcontrib><creatorcontrib>Okano, Kunihisa</creatorcontrib><title>Stability Remarks on Discretized Multi-dimensional Diffusion Process Models and its Application to Model Reduction</title><title>Shisutemu Seigyo Jouhou Gakkai rombunshi</title><description>This paper presents some stability remarks on the discretized diffusion process models. The motivation arises from our observation of stability preserving property in terms of a model reduction procedure of the 1D model. Before the stability analysis of the non-reduced order model, the state-space model is extended to multi-dimensional cases in a systematic manner. This formulation and the corresponding stability analysis are the first non-trivial contributions here. Then we clarify the fact behind the stability preserving property. As a consequence, one can employ arbitrary size of reduced order model based on the techniques such as the principal component analysis without any concern for the stability. The power of this reduction method is demonstrated via numerical examples for the 1D and 2D cases.</description><subject>Discretization</subject><subject>Model reduction</subject><subject>One dimensional models</subject><subject>Principal components analysis</subject><subject>Reduced order models</subject><subject>Stability analysis</subject><subject>State space models</subject><issn>1342-5668</issn><issn>2185-811X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNotj8tKAzEUhoMoWGp3PkDA9dRJTiaXZamXCi2KF3BXcoXU6aROMgt9eqfUzX8O5zt88CN0Tep5w6W4jdlGPwc-p0KdoQklsqkkIZ_naEKA0arhXF6iWc7R1EAEIwSaCerfijaxjeUHv_q97r8yTh2-G2W9L_HXO7wZ2hIrF_e-yzF1uh1pCMNxxy99sj5nvEnOtxnrzuFYMl4cDm20uhxfSjrRUe8GezxdoYug2-xn_3OKPh7u35erav38-LRcrKsdIZRW1gJTvOGeWKcCZ8pSJqxhRoLSJoALRooaZGC1gAasEN4wB2yMmnrrYIpuTt5Dn74Hn8t2l4Z-LJC3VNVESUoVhT-WIF89</recordid><startdate>20230815</startdate><enddate>20230815</enddate><creator>Zhang, Weiqi</creator><creator>Hirata, Kentaro</creator><creator>Nakamura, Yukinori</creator><creator>Okano, Kunihisa</creator><general>Japan Science and Technology Agency</general><scope>JQ2</scope></search><sort><creationdate>20230815</creationdate><title>Stability Remarks on Discretized Multi-dimensional Diffusion Process Models and its Application to Model Reduction</title><author>Zhang, Weiqi ; Hirata, Kentaro ; Nakamura, Yukinori ; Okano, Kunihisa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-j1122-cc349656e1cd9f649c247cb4b839abf3dfb87038f407353c77eb4d34b4d02ecd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>jpn</language><creationdate>2023</creationdate><topic>Discretization</topic><topic>Model reduction</topic><topic>One dimensional models</topic><topic>Principal components analysis</topic><topic>Reduced order models</topic><topic>Stability analysis</topic><topic>State space models</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Weiqi</creatorcontrib><creatorcontrib>Hirata, Kentaro</creatorcontrib><creatorcontrib>Nakamura, Yukinori</creatorcontrib><creatorcontrib>Okano, Kunihisa</creatorcontrib><collection>ProQuest Computer Science Collection</collection><jtitle>Shisutemu Seigyo Jouhou Gakkai rombunshi</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Weiqi</au><au>Hirata, Kentaro</au><au>Nakamura, Yukinori</au><au>Okano, Kunihisa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Stability Remarks on Discretized Multi-dimensional Diffusion Process Models and its Application to Model Reduction</atitle><jtitle>Shisutemu Seigyo Jouhou Gakkai rombunshi</jtitle><date>2023-08-15</date><risdate>2023</risdate><volume>36</volume><issue>8</issue><issn>1342-5668</issn><eissn>2185-811X</eissn><abstract>This paper presents some stability remarks on the discretized diffusion process models. The motivation arises from our observation of stability preserving property in terms of a model reduction procedure of the 1D model. Before the stability analysis of the non-reduced order model, the state-space model is extended to multi-dimensional cases in a systematic manner. This formulation and the corresponding stability analysis are the first non-trivial contributions here. Then we clarify the fact behind the stability preserving property. As a consequence, one can employ arbitrary size of reduced order model based on the techniques such as the principal component analysis without any concern for the stability. The power of this reduction method is demonstrated via numerical examples for the 1D and 2D cases.</abstract><cop>Kyoto</cop><pub>Japan Science and Technology Agency</pub><doi>10.5687/iscie.36.279</doi></addata></record>
fulltext fulltext
identifier ISSN: 1342-5668
ispartof Shisutemu Seigyo Jouhou Gakkai rombunshi, 2023-08, Vol.36 (8)
issn 1342-5668
2185-811X
language jpn
recordid cdi_proquest_journals_2901982292
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; J-STAGE (Japan Science & Technology Information Aggregator, Electronic) Freely Available Titles - Japanese
subjects Discretization
Model reduction
One dimensional models
Principal components analysis
Reduced order models
Stability analysis
State space models
title Stability Remarks on Discretized Multi-dimensional Diffusion Process Models and its Application to Model Reduction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T17%3A00%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Stability%20Remarks%20on%20Discretized%20Multi-dimensional%20Diffusion%20Process%20Models%20and%20its%20Application%20to%20Model%20Reduction&rft.jtitle=Shisutemu%20Seigyo%20Jouhou%20Gakkai%20rombunshi&rft.au=Zhang,%20Weiqi&rft.date=2023-08-15&rft.volume=36&rft.issue=8&rft.issn=1342-5668&rft.eissn=2185-811X&rft_id=info:doi/10.5687/iscie.36.279&rft_dat=%3Cproquest%3E2901982292%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901982292&rft_id=info:pmid/&rfr_iscdi=true