Negative Numberings in Admissible Sets. I

We construct an admissible set such that the family of all -computably enumerable sets possesses a negative computable -numbering but lacks positive computable -numberings. We also discuss the question on existence of minimal negative -numberings.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Siberian advances in mathematics 2023-12, Vol.33 (4), p.293-321
Hauptverfasser: Kalimullin, I. Sh, Puzarenko, V. G., Faĭzrakhmanov, M. Kh
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 321
container_issue 4
container_start_page 293
container_title Siberian advances in mathematics
container_volume 33
creator Kalimullin, I. Sh
Puzarenko, V. G.
Faĭzrakhmanov, M. Kh
description We construct an admissible set such that the family of all -computably enumerable sets possesses a negative computable -numbering but lacks positive computable -numberings. We also discuss the question on existence of minimal negative -numberings.
doi_str_mv 10.1134/S105513442304003X
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2901933494</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901933494</sourcerecordid><originalsourceid>FETCH-LOGICAL-c231X-3a2cd1f78b3ddfe56a1709454134880f4c72081700d8b90a69e49b0eab7d56063</originalsourceid><addsrcrecordid>eNp1UE1LAzEQDaJgrf4AbwuePGydfOwmOZbiR6HUQxV6C8kmW7Z0P0x2Bf-9WVbwIJ7mzbx5b3iD0C2GBcaUPewwZFkEjFBgAHR_hmZYUpYKTPLziCOdjvwlugrhCLGVnM_Q_dYddF99umQ71Mb5qjmEpGqSpa2rECpzcsnO9WGRrK_RRalPwd381Dl6f3p8W72km9fn9Wq5SQtC8T6lmhQWl1wYam3pslxjDpJlLB4XAkpWcAIizsAKI0Hn0jFpwGnDbZZDTufobvLtfPsxuNCrYzv4Jp5URELMRJlkcQtPW4VvQ_CuVJ2vau2_FAY1fkT9-UjUkEkTujGn87_O_4u-ATxgX0w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901933494</pqid></control><display><type>article</type><title>Negative Numberings in Admissible Sets. I</title><source>SpringerLink Journals</source><creator>Kalimullin, I. Sh ; Puzarenko, V. G. ; Faĭzrakhmanov, M. Kh</creator><creatorcontrib>Kalimullin, I. Sh ; Puzarenko, V. G. ; Faĭzrakhmanov, M. Kh</creatorcontrib><description>We construct an admissible set such that the family of all -computably enumerable sets possesses a negative computable -numbering but lacks positive computable -numberings. We also discuss the question on existence of minimal negative -numberings.</description><identifier>ISSN: 1055-1344</identifier><identifier>EISSN: 1934-8126</identifier><identifier>DOI: 10.1134/S105513442304003X</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Mathematics ; Mathematics and Statistics</subject><ispartof>Siberian advances in mathematics, 2023-12, Vol.33 (4), p.293-321</ispartof><rights>Pleiades Publishing, Ltd. 2023</rights><rights>Pleiades Publishing, Ltd. 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c231X-3a2cd1f78b3ddfe56a1709454134880f4c72081700d8b90a69e49b0eab7d56063</citedby><cites>FETCH-LOGICAL-c231X-3a2cd1f78b3ddfe56a1709454134880f4c72081700d8b90a69e49b0eab7d56063</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S105513442304003X$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S105513442304003X$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27903,27904,41467,42536,51298</link.rule.ids></links><search><creatorcontrib>Kalimullin, I. Sh</creatorcontrib><creatorcontrib>Puzarenko, V. G.</creatorcontrib><creatorcontrib>Faĭzrakhmanov, M. Kh</creatorcontrib><title>Negative Numberings in Admissible Sets. I</title><title>Siberian advances in mathematics</title><addtitle>Sib. Adv. Math</addtitle><description>We construct an admissible set such that the family of all -computably enumerable sets possesses a negative computable -numbering but lacks positive computable -numberings. We also discuss the question on existence of minimal negative -numberings.</description><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><issn>1055-1344</issn><issn>1934-8126</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1UE1LAzEQDaJgrf4AbwuePGydfOwmOZbiR6HUQxV6C8kmW7Z0P0x2Bf-9WVbwIJ7mzbx5b3iD0C2GBcaUPewwZFkEjFBgAHR_hmZYUpYKTPLziCOdjvwlugrhCLGVnM_Q_dYddF99umQ71Mb5qjmEpGqSpa2rECpzcsnO9WGRrK_RRalPwd381Dl6f3p8W72km9fn9Wq5SQtC8T6lmhQWl1wYam3pslxjDpJlLB4XAkpWcAIizsAKI0Hn0jFpwGnDbZZDTufobvLtfPsxuNCrYzv4Jp5URELMRJlkcQtPW4VvQ_CuVJ2vau2_FAY1fkT9-UjUkEkTujGn87_O_4u-ATxgX0w</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Kalimullin, I. Sh</creator><creator>Puzarenko, V. G.</creator><creator>Faĭzrakhmanov, M. Kh</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Negative Numberings in Admissible Sets. I</title><author>Kalimullin, I. Sh ; Puzarenko, V. G. ; Faĭzrakhmanov, M. Kh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c231X-3a2cd1f78b3ddfe56a1709454134880f4c72081700d8b90a69e49b0eab7d56063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kalimullin, I. Sh</creatorcontrib><creatorcontrib>Puzarenko, V. G.</creatorcontrib><creatorcontrib>Faĭzrakhmanov, M. Kh</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian advances in mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kalimullin, I. Sh</au><au>Puzarenko, V. G.</au><au>Faĭzrakhmanov, M. Kh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Negative Numberings in Admissible Sets. I</atitle><jtitle>Siberian advances in mathematics</jtitle><stitle>Sib. Adv. Math</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>33</volume><issue>4</issue><spage>293</spage><epage>321</epage><pages>293-321</pages><issn>1055-1344</issn><eissn>1934-8126</eissn><abstract>We construct an admissible set such that the family of all -computably enumerable sets possesses a negative computable -numbering but lacks positive computable -numberings. We also discuss the question on existence of minimal negative -numberings.</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S105513442304003X</doi><tpages>29</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1055-1344
ispartof Siberian advances in mathematics, 2023-12, Vol.33 (4), p.293-321
issn 1055-1344
1934-8126
language eng
recordid cdi_proquest_journals_2901933494
source SpringerLink Journals
subjects Mathematics
Mathematics and Statistics
title Negative Numberings in Admissible Sets. I
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A09%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Negative%20Numberings%20in%20Admissible%20Sets.%20I&rft.jtitle=Siberian%20advances%20in%20mathematics&rft.au=Kalimullin,%20I.%20Sh&rft.date=2023-12-01&rft.volume=33&rft.issue=4&rft.spage=293&rft.epage=321&rft.pages=293-321&rft.issn=1055-1344&rft.eissn=1934-8126&rft_id=info:doi/10.1134/S105513442304003X&rft_dat=%3Cproquest_cross%3E2901933494%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901933494&rft_id=info:pmid/&rfr_iscdi=true