Exploring Deep Neural Networks for Automated Ticket Classification
Manual categorization of service desk tickets may lead to dispatching of problem tickets to aninappropriateexpertgroup,delays the response time and interrupts the normal functioning of the business.Traditional machine learningapproachescan be applied to train an automated service desk ticket classif...
Gespeichert in:
Veröffentlicht in: | NeuroQuantology 2022-01, Vol.20 (13), p.3922 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 13 |
container_start_page | 3922 |
container_title | NeuroQuantology |
container_volume | 20 |
creator | Paramesh, S P SHREEDHARA, K S |
description | Manual categorization of service desk tickets may lead to dispatching of problem tickets to aninappropriateexpertgroup,delays the response time and interrupts the normal functioning of the business.Traditional machine learningapproachescan be applied to train an automated service desk ticket classifier by mining the historical tickets.Sparsity, non-linearity, overfitting and handcrafting of features are some of the issues concerning the traditional ticket classifiers.This research work proposes a deep neural network model based on Convolution Neural Network (CNN) for the automated classification of service desk tickets.A real-world service desk ticket data is used to corroborate the efficiency of the proposed ticket classifier model and compared the results with the traditionalclassifiers.The proposed CNN model outperforms the chosen alternatives in terms of overall model performance.Benefits of the proposed model includes assignment of tickets to the correct domain groups,speedy resolution, improved productivity, uninterrupted business and customer satisfaction. |
doi_str_mv | 10.48047/NQ.2022.20.13.NQ88477 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2901726797</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901726797</sourcerecordid><originalsourceid>FETCH-proquest_journals_29017267973</originalsourceid><addsrcrecordid>eNqNir0OgjAYABsTE_HnFUwTZ_Br-SmMihgnEhJ20mAxBaTYlujjy-ADuNwNdwjtCXhBDAE75oVHgdIZHvG9vIjjgLEFcogPvhuSEFZobUwLEDJIIgeds8_YKy2HB74IMeJcTJr3s-xb6c7gRml8mqx6civuuJR1JyxOe26MbGTNrVTDFi0b3hux-3mDDtesTG_uqNVrEsZWrZr0MKeKJkAYjVjC_P-uL2klP9o</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901726797</pqid></control><display><type>article</type><title>Exploring Deep Neural Networks for Automated Ticket Classification</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Paramesh, S P ; SHREEDHARA, K S</creator><creatorcontrib>Paramesh, S P ; SHREEDHARA, K S</creatorcontrib><description>Manual categorization of service desk tickets may lead to dispatching of problem tickets to aninappropriateexpertgroup,delays the response time and interrupts the normal functioning of the business.Traditional machine learningapproachescan be applied to train an automated service desk ticket classifier by mining the historical tickets.Sparsity, non-linearity, overfitting and handcrafting of features are some of the issues concerning the traditional ticket classifiers.This research work proposes a deep neural network model based on Convolution Neural Network (CNN) for the automated classification of service desk tickets.A real-world service desk ticket data is used to corroborate the efficiency of the proposed ticket classifier model and compared the results with the traditionalclassifiers.The proposed CNN model outperforms the chosen alternatives in terms of overall model performance.Benefits of the proposed model includes assignment of tickets to the correct domain groups,speedy resolution, improved productivity, uninterrupted business and customer satisfaction.</description><identifier>EISSN: 1303-5150</identifier><identifier>DOI: 10.48047/NQ.2022.20.13.NQ88477</identifier><language>eng</language><publisher>Bornova Izmir: NeuroQuantology</publisher><subject>Algorithms ; Artificial neural networks ; Automation ; Classification ; Classifiers ; Customer satisfaction ; Datasets ; Deep learning ; Desks ; End users ; Literature reviews ; Machine learning ; Natural language ; Neural networks ; Semantics ; Sparsity ; Support vector machines ; Text categorization ; User interface</subject><ispartof>NeuroQuantology, 2022-01, Vol.20 (13), p.3922</ispartof><rights>Copyright NeuroQuantology 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Paramesh, S P</creatorcontrib><creatorcontrib>SHREEDHARA, K S</creatorcontrib><title>Exploring Deep Neural Networks for Automated Ticket Classification</title><title>NeuroQuantology</title><description>Manual categorization of service desk tickets may lead to dispatching of problem tickets to aninappropriateexpertgroup,delays the response time and interrupts the normal functioning of the business.Traditional machine learningapproachescan be applied to train an automated service desk ticket classifier by mining the historical tickets.Sparsity, non-linearity, overfitting and handcrafting of features are some of the issues concerning the traditional ticket classifiers.This research work proposes a deep neural network model based on Convolution Neural Network (CNN) for the automated classification of service desk tickets.A real-world service desk ticket data is used to corroborate the efficiency of the proposed ticket classifier model and compared the results with the traditionalclassifiers.The proposed CNN model outperforms the chosen alternatives in terms of overall model performance.Benefits of the proposed model includes assignment of tickets to the correct domain groups,speedy resolution, improved productivity, uninterrupted business and customer satisfaction.</description><subject>Algorithms</subject><subject>Artificial neural networks</subject><subject>Automation</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Customer satisfaction</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Desks</subject><subject>End users</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>Natural language</subject><subject>Neural networks</subject><subject>Semantics</subject><subject>Sparsity</subject><subject>Support vector machines</subject><subject>Text categorization</subject><subject>User interface</subject><issn>1303-5150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNir0OgjAYABsTE_HnFUwTZ_Br-SmMihgnEhJ20mAxBaTYlujjy-ADuNwNdwjtCXhBDAE75oVHgdIZHvG9vIjjgLEFcogPvhuSEFZobUwLEDJIIgeds8_YKy2HB74IMeJcTJr3s-xb6c7gRml8mqx6civuuJR1JyxOe26MbGTNrVTDFi0b3hux-3mDDtesTG_uqNVrEsZWrZr0MKeKJkAYjVjC_P-uL2klP9o</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Paramesh, S P</creator><creator>SHREEDHARA, K S</creator><general>NeuroQuantology</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PKEHL</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>Exploring Deep Neural Networks for Automated Ticket Classification</title><author>Paramesh, S P ; SHREEDHARA, K S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29017267973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Artificial neural networks</topic><topic>Automation</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Customer satisfaction</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Desks</topic><topic>End users</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>Natural language</topic><topic>Neural networks</topic><topic>Semantics</topic><topic>Sparsity</topic><topic>Support vector machines</topic><topic>Text categorization</topic><topic>User interface</topic><toplevel>online_resources</toplevel><creatorcontrib>Paramesh, S P</creatorcontrib><creatorcontrib>SHREEDHARA, K S</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Psychology</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied & Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>NeuroQuantology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paramesh, S P</au><au>SHREEDHARA, K S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Exploring Deep Neural Networks for Automated Ticket Classification</atitle><jtitle>NeuroQuantology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>20</volume><issue>13</issue><spage>3922</spage><pages>3922-</pages><eissn>1303-5150</eissn><abstract>Manual categorization of service desk tickets may lead to dispatching of problem tickets to aninappropriateexpertgroup,delays the response time and interrupts the normal functioning of the business.Traditional machine learningapproachescan be applied to train an automated service desk ticket classifier by mining the historical tickets.Sparsity, non-linearity, overfitting and handcrafting of features are some of the issues concerning the traditional ticket classifiers.This research work proposes a deep neural network model based on Convolution Neural Network (CNN) for the automated classification of service desk tickets.A real-world service desk ticket data is used to corroborate the efficiency of the proposed ticket classifier model and compared the results with the traditionalclassifiers.The proposed CNN model outperforms the chosen alternatives in terms of overall model performance.Benefits of the proposed model includes assignment of tickets to the correct domain groups,speedy resolution, improved productivity, uninterrupted business and customer satisfaction.</abstract><cop>Bornova Izmir</cop><pub>NeuroQuantology</pub><doi>10.48047/NQ.2022.20.13.NQ88477</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1303-5150 |
ispartof | NeuroQuantology, 2022-01, Vol.20 (13), p.3922 |
issn | 1303-5150 |
language | eng |
recordid | cdi_proquest_journals_2901726797 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Artificial neural networks Automation Classification Classifiers Customer satisfaction Datasets Deep learning Desks End users Literature reviews Machine learning Natural language Neural networks Semantics Sparsity Support vector machines Text categorization User interface |
title | Exploring Deep Neural Networks for Automated Ticket Classification |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A30%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Exploring%20Deep%20Neural%20Networks%20for%20Automated%20Ticket%20Classification&rft.jtitle=NeuroQuantology&rft.au=Paramesh,%20S%20P&rft.date=2022-01-01&rft.volume=20&rft.issue=13&rft.spage=3922&rft.pages=3922-&rft.eissn=1303-5150&rft_id=info:doi/10.48047/NQ.2022.20.13.NQ88477&rft_dat=%3Cproquest%3E2901726797%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901726797&rft_id=info:pmid/&rfr_iscdi=true |