A Review of PCA and GAN Based Change Detection of Remote Sensing Images
This paper aims to compare state-of-the-art change detection techniques like Principal Component Analysis (PCA) with the new advancements inmachine learning techniques like Generative Adversarial Network (GAN). GANis a type of Adversarial Network which uses fake data to discriminate from the real on...
Gespeichert in:
Veröffentlicht in: | NeuroQuantology 2022-01, Vol.20 (14), p.735 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 14 |
container_start_page | 735 |
container_title | NeuroQuantology |
container_volume | 20 |
creator | Verma, Kshitij Kumar Basu, Mehuli Halder, Tamesh Gayen, Rintu Kumar Arundhati Mishra Ray Chakravarty, Debashish |
description | This paper aims to compare state-of-the-art change detection techniques like Principal Component Analysis (PCA) with the new advancements inmachine learning techniques like Generative Adversarial Network (GAN). GANis a type of Adversarial Network which uses fake data to discriminate from the real one. This robustness of the GAN makes it ideal for the change detection taskswhich don't have any significant changes. On the other hand, PCA is very effective in finding the significant changes that are profound in the visual analysis of the image. This paper presents both change detection techniques and the other classification methods to present a comparative review of the accuracy and timecomplexities. It was found that the implementation of the GAN-based process ishelpful in specific change detection scenarios with moderate time complexity requirements as compared to PCA |
doi_str_mv | 10.4704/nq.2022.20.14.NQ880102 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2901705106</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901705106</sourcerecordid><originalsourceid>FETCH-proquest_journals_29017051063</originalsourceid><addsrcrecordid>eNqNiksOgjAUABsTE79XMC9xDb4WEFwifjdE0b1p9IEYaYWiXl9MPICbmcUMYyOOtuujO1GlLVCIBjZ37XgfBMhRtFiXO-hYHveww3rG3BA9H2fTLluHkNArpzfoFHZRCFJdYB3GMJeGLhBdpcoIFlTTuc61-l4JFbomOJAyucpgW8iMzIC1U3k3NPy5z8ar5THaWI9Kl08y9emmn5Vq0knMkPvocZw6_10fiXY_JQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901705106</pqid></control><display><type>article</type><title>A Review of PCA and GAN Based Change Detection of Remote Sensing Images</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Verma, Kshitij Kumar ; Basu, Mehuli ; Halder, Tamesh ; Gayen, Rintu Kumar ; Arundhati Mishra Ray ; Chakravarty, Debashish</creator><creatorcontrib>Verma, Kshitij Kumar ; Basu, Mehuli ; Halder, Tamesh ; Gayen, Rintu Kumar ; Arundhati Mishra Ray ; Chakravarty, Debashish</creatorcontrib><description>This paper aims to compare state-of-the-art change detection techniques like Principal Component Analysis (PCA) with the new advancements inmachine learning techniques like Generative Adversarial Network (GAN). GANis a type of Adversarial Network which uses fake data to discriminate from the real one. This robustness of the GAN makes it ideal for the change detection taskswhich don't have any significant changes. On the other hand, PCA is very effective in finding the significant changes that are profound in the visual analysis of the image. This paper presents both change detection techniques and the other classification methods to present a comparative review of the accuracy and timecomplexities. It was found that the implementation of the GAN-based process ishelpful in specific change detection scenarios with moderate time complexity requirements as compared to PCA</description><identifier>EISSN: 1303-5150</identifier><identifier>DOI: 10.4704/nq.2022.20.14.NQ880102</identifier><language>eng</language><publisher>Bornova Izmir: NeuroQuantology</publisher><subject>Accuracy ; Algorithms ; Change detection ; Conflicts of interest ; Eigenvalues ; Generative adversarial networks ; Methods ; Noise ; Principal components analysis ; Remote sensing</subject><ispartof>NeuroQuantology, 2022-01, Vol.20 (14), p.735</ispartof><rights>Copyright NeuroQuantology 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Verma, Kshitij Kumar</creatorcontrib><creatorcontrib>Basu, Mehuli</creatorcontrib><creatorcontrib>Halder, Tamesh</creatorcontrib><creatorcontrib>Gayen, Rintu Kumar</creatorcontrib><creatorcontrib>Arundhati Mishra Ray</creatorcontrib><creatorcontrib>Chakravarty, Debashish</creatorcontrib><title>A Review of PCA and GAN Based Change Detection of Remote Sensing Images</title><title>NeuroQuantology</title><description>This paper aims to compare state-of-the-art change detection techniques like Principal Component Analysis (PCA) with the new advancements inmachine learning techniques like Generative Adversarial Network (GAN). GANis a type of Adversarial Network which uses fake data to discriminate from the real one. This robustness of the GAN makes it ideal for the change detection taskswhich don't have any significant changes. On the other hand, PCA is very effective in finding the significant changes that are profound in the visual analysis of the image. This paper presents both change detection techniques and the other classification methods to present a comparative review of the accuracy and timecomplexities. It was found that the implementation of the GAN-based process ishelpful in specific change detection scenarios with moderate time complexity requirements as compared to PCA</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Change detection</subject><subject>Conflicts of interest</subject><subject>Eigenvalues</subject><subject>Generative adversarial networks</subject><subject>Methods</subject><subject>Noise</subject><subject>Principal components analysis</subject><subject>Remote sensing</subject><issn>1303-5150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNiksOgjAUABsTE79XMC9xDb4WEFwifjdE0b1p9IEYaYWiXl9MPICbmcUMYyOOtuujO1GlLVCIBjZ37XgfBMhRtFiXO-hYHveww3rG3BA9H2fTLluHkNArpzfoFHZRCFJdYB3GMJeGLhBdpcoIFlTTuc61-l4JFbomOJAyucpgW8iMzIC1U3k3NPy5z8ar5THaWI9Kl08y9emmn5Vq0knMkPvocZw6_10fiXY_JQ</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Verma, Kshitij Kumar</creator><creator>Basu, Mehuli</creator><creator>Halder, Tamesh</creator><creator>Gayen, Rintu Kumar</creator><creator>Arundhati Mishra Ray</creator><creator>Chakravarty, Debashish</creator><general>NeuroQuantology</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>A Review of PCA and GAN Based Change Detection of Remote Sensing Images</title><author>Verma, Kshitij Kumar ; Basu, Mehuli ; Halder, Tamesh ; Gayen, Rintu Kumar ; Arundhati Mishra Ray ; Chakravarty, Debashish</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29017051063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Change detection</topic><topic>Conflicts of interest</topic><topic>Eigenvalues</topic><topic>Generative adversarial networks</topic><topic>Methods</topic><topic>Noise</topic><topic>Principal components analysis</topic><topic>Remote sensing</topic><toplevel>online_resources</toplevel><creatorcontrib>Verma, Kshitij Kumar</creatorcontrib><creatorcontrib>Basu, Mehuli</creatorcontrib><creatorcontrib>Halder, Tamesh</creatorcontrib><creatorcontrib>Gayen, Rintu Kumar</creatorcontrib><creatorcontrib>Arundhati Mishra Ray</creatorcontrib><creatorcontrib>Chakravarty, Debashish</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Psychology</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>NeuroQuantology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verma, Kshitij Kumar</au><au>Basu, Mehuli</au><au>Halder, Tamesh</au><au>Gayen, Rintu Kumar</au><au>Arundhati Mishra Ray</au><au>Chakravarty, Debashish</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Review of PCA and GAN Based Change Detection of Remote Sensing Images</atitle><jtitle>NeuroQuantology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>20</volume><issue>14</issue><spage>735</spage><pages>735-</pages><eissn>1303-5150</eissn><abstract>This paper aims to compare state-of-the-art change detection techniques like Principal Component Analysis (PCA) with the new advancements inmachine learning techniques like Generative Adversarial Network (GAN). GANis a type of Adversarial Network which uses fake data to discriminate from the real one. This robustness of the GAN makes it ideal for the change detection taskswhich don't have any significant changes. On the other hand, PCA is very effective in finding the significant changes that are profound in the visual analysis of the image. This paper presents both change detection techniques and the other classification methods to present a comparative review of the accuracy and timecomplexities. It was found that the implementation of the GAN-based process ishelpful in specific change detection scenarios with moderate time complexity requirements as compared to PCA</abstract><cop>Bornova Izmir</cop><pub>NeuroQuantology</pub><doi>10.4704/nq.2022.20.14.NQ880102</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1303-5150 |
ispartof | NeuroQuantology, 2022-01, Vol.20 (14), p.735 |
issn | 1303-5150 |
language | eng |
recordid | cdi_proquest_journals_2901705106 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Algorithms Change detection Conflicts of interest Eigenvalues Generative adversarial networks Methods Noise Principal components analysis Remote sensing |
title | A Review of PCA and GAN Based Change Detection of Remote Sensing Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T04%3A44%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Review%20of%20PCA%20and%20GAN%20Based%20Change%20Detection%20of%20Remote%20Sensing%20Images&rft.jtitle=NeuroQuantology&rft.au=Verma,%20Kshitij%20Kumar&rft.date=2022-01-01&rft.volume=20&rft.issue=14&rft.spage=735&rft.pages=735-&rft.eissn=1303-5150&rft_id=info:doi/10.4704/nq.2022.20.14.NQ880102&rft_dat=%3Cproquest%3E2901705106%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901705106&rft_id=info:pmid/&rfr_iscdi=true |