Neural networks for boosted di-\(\tau\) identification

We train several neural networks and boosted decision trees to discriminate fully-hadronic boosted di-\(\tau\) topologies against background QCD jets, using calorimeter and tracking information. Boosted di-\(\tau\) topologies consisting of a pair of highly collimated \(\tau\)-leptons, arise from the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Tamir, Nadav, Bessudo, Ilan, Chen, Boping, Raiko, Hely, Barak, Liron
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Tamir, Nadav
Bessudo, Ilan
Chen, Boping
Raiko, Hely
Barak, Liron
description We train several neural networks and boosted decision trees to discriminate fully-hadronic boosted di-\(\tau\) topologies against background QCD jets, using calorimeter and tracking information. Boosted di-\(\tau\) topologies consisting of a pair of highly collimated \(\tau\)-leptons, arise from the decay of a highly energetic Standard Model Higgs or Z boson or from particles beyond the Standard Model. We compare the tagging performance for different neural-network models and a boosted decision tree, the latter serving as a simple benchmark machine learning model.
doi_str_mv 10.48550/arxiv.2312.08276
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2901610082</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901610082</sourcerecordid><originalsourceid>FETCH-proquest_journals_29016100823</originalsourceid><addsrcrecordid>eNqNjr0KwjAYAIMgWLQP4BZw0aE1-dKkdRbFycmxUKJNIbUkmh_18e3gAzjdcDccQktK8qLinGyl--hXDoxCTiooxQQlwBjNqgJghlLve0IIiBI4ZwkSZxWdHLBR4W3d3ePOOny11gfV4lZn9boOMtYbrFtlgu70TQZtzQJNOzl4lf44R6vj4bI_ZQ9nn1H50PQ2OjOqBnaECkrGF_Zf9QVaxDtV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901610082</pqid></control><display><type>article</type><title>Neural networks for boosted di-\(\tau\) identification</title><source>Free E- Journals</source><creator>Tamir, Nadav ; Bessudo, Ilan ; Chen, Boping ; Raiko, Hely ; Barak, Liron</creator><creatorcontrib>Tamir, Nadav ; Bessudo, Ilan ; Chen, Boping ; Raiko, Hely ; Barak, Liron</creatorcontrib><description>We train several neural networks and boosted decision trees to discriminate fully-hadronic boosted di-\(\tau\) topologies against background QCD jets, using calorimeter and tracking information. Boosted di-\(\tau\) topologies consisting of a pair of highly collimated \(\tau\)-leptons, arise from the decay of a highly energetic Standard Model Higgs or Z boson or from particles beyond the Standard Model. We compare the tagging performance for different neural-network models and a boosted decision tree, the latter serving as a simple benchmark machine learning model.</description><identifier>EISSN: 2331-8422</identifier><identifier>DOI: 10.48550/arxiv.2312.08276</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Decision trees ; Leptons ; Machine learning ; Network topologies ; Neural networks ; Quantum chromodynamics ; Standard model (particle physics)</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>781,785,27927</link.rule.ids></links><search><creatorcontrib>Tamir, Nadav</creatorcontrib><creatorcontrib>Bessudo, Ilan</creatorcontrib><creatorcontrib>Chen, Boping</creatorcontrib><creatorcontrib>Raiko, Hely</creatorcontrib><creatorcontrib>Barak, Liron</creatorcontrib><title>Neural networks for boosted di-\(\tau\) identification</title><title>arXiv.org</title><description>We train several neural networks and boosted decision trees to discriminate fully-hadronic boosted di-\(\tau\) topologies against background QCD jets, using calorimeter and tracking information. Boosted di-\(\tau\) topologies consisting of a pair of highly collimated \(\tau\)-leptons, arise from the decay of a highly energetic Standard Model Higgs or Z boson or from particles beyond the Standard Model. We compare the tagging performance for different neural-network models and a boosted decision tree, the latter serving as a simple benchmark machine learning model.</description><subject>Decision trees</subject><subject>Leptons</subject><subject>Machine learning</subject><subject>Network topologies</subject><subject>Neural networks</subject><subject>Quantum chromodynamics</subject><subject>Standard model (particle physics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjr0KwjAYAIMgWLQP4BZw0aE1-dKkdRbFycmxUKJNIbUkmh_18e3gAzjdcDccQktK8qLinGyl--hXDoxCTiooxQQlwBjNqgJghlLve0IIiBI4ZwkSZxWdHLBR4W3d3ePOOny11gfV4lZn9boOMtYbrFtlgu70TQZtzQJNOzl4lf44R6vj4bI_ZQ9nn1H50PQ2OjOqBnaECkrGF_Zf9QVaxDtV</recordid><startdate>20240311</startdate><enddate>20240311</enddate><creator>Tamir, Nadav</creator><creator>Bessudo, Ilan</creator><creator>Chen, Boping</creator><creator>Raiko, Hely</creator><creator>Barak, Liron</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240311</creationdate><title>Neural networks for boosted di-\(\tau\) identification</title><author>Tamir, Nadav ; Bessudo, Ilan ; Chen, Boping ; Raiko, Hely ; Barak, Liron</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29016100823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Decision trees</topic><topic>Leptons</topic><topic>Machine learning</topic><topic>Network topologies</topic><topic>Neural networks</topic><topic>Quantum chromodynamics</topic><topic>Standard model (particle physics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Tamir, Nadav</creatorcontrib><creatorcontrib>Bessudo, Ilan</creatorcontrib><creatorcontrib>Chen, Boping</creatorcontrib><creatorcontrib>Raiko, Hely</creatorcontrib><creatorcontrib>Barak, Liron</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Engineering Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tamir, Nadav</au><au>Bessudo, Ilan</au><au>Chen, Boping</au><au>Raiko, Hely</au><au>Barak, Liron</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Neural networks for boosted di-\(\tau\) identification</atitle><jtitle>arXiv.org</jtitle><date>2024-03-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We train several neural networks and boosted decision trees to discriminate fully-hadronic boosted di-\(\tau\) topologies against background QCD jets, using calorimeter and tracking information. Boosted di-\(\tau\) topologies consisting of a pair of highly collimated \(\tau\)-leptons, arise from the decay of a highly energetic Standard Model Higgs or Z boson or from particles beyond the Standard Model. We compare the tagging performance for different neural-network models and a boosted decision tree, the latter serving as a simple benchmark machine learning model.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><doi>10.48550/arxiv.2312.08276</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-03
issn 2331-8422
language eng
recordid cdi_proquest_journals_2901610082
source Free E- Journals
subjects Decision trees
Leptons
Machine learning
Network topologies
Neural networks
Quantum chromodynamics
Standard model (particle physics)
title Neural networks for boosted di-\(\tau\) identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T20%3A54%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Neural%20networks%20for%20boosted%20di-%5C(%5Ctau%5C)%20identification&rft.jtitle=arXiv.org&rft.au=Tamir,%20Nadav&rft.date=2024-03-11&rft.eissn=2331-8422&rft_id=info:doi/10.48550/arxiv.2312.08276&rft_dat=%3Cproquest%3E2901610082%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901610082&rft_id=info:pmid/&rfr_iscdi=true