Performance analysis of a novel small-scale radial turbine with adjustable nozzle for ocean thermal energy conversion
Ocean thermal energy is acknowledged as one of the most promising ocean renewable energy sources in low latitude sea areas. In the ocean thermal energy conversion system, the turbine plays a significant role, and it is responsible for converting the working medium enthalpy into the shaft output powe...
Gespeichert in:
Veröffentlicht in: | AIP advances 2023-12, Vol.13 (12), p.125121-125121-12 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 125121-12 |
---|---|
container_issue | 12 |
container_start_page | 125121 |
container_title | AIP advances |
container_volume | 13 |
creator | Ge, Yunzheng Peng, Jingping Chen, Fengyun Liu, Lei Zhang, Wanjun Liu, Weimin Sun, Jinju |
description | Ocean thermal energy is acknowledged as one of the most promising ocean renewable energy sources in low latitude sea areas. In the ocean thermal energy conversion system, the turbine plays a significant role, and it is responsible for converting the working medium enthalpy into the shaft output power. The present study is focused on the performance analysis of a novel radial inflow turbine with an adjustable nozzle in the OTEC system in order to adapt to the changing operating conditions of the turbine, which vary with the change in seawater temperature. At the design point, the predicted overall isentropic efficiency is 86.5%, and the shaft output power is 15.3 kW, slightly higher than the expected 15 kW. Furthermore, a parametric study is performed, respectively, for the nozzle vane stagger angle and the nozzle-impeller radial clearance to explore the favorable geometric parameters for different conditions. The turbine’s overall efficiency increases slightly with deceasing nozzle-impeller radial clearance, and the variation of the nozzle vane stagger angle is much more influential on the turbine shaft power and overall efficiency. The optimum stagger angle point moves from 32° to 36° gradually with the increase in nozzle-impeller clearance. Finally, the feasibility of an adjustable nozzle for the turbine under off-design conditions was verified by combining the radial clearance and nozzle stagger angle. |
doi_str_mv | 10.1063/5.0174947 |
format | Article |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2901580892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_77f9fb577f0f4192ba673d4215c3bb4e</doaj_id><sourcerecordid>2901580892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-162aec120baf821a7ca344425bff7eeacc18e06dfa2aa6260bd4dc7a1e200f873</originalsourceid><addsrcrecordid>eNp9kUFrHCEYhofSQEKyh_wDoacWJlHHGWeOZWmTwEJ7aM7y6XwmLq6m6qTs_vqabAg91csr-vB88H5Nc8noFaNDd91fUSbFJOSH5oyzfmw7zoeP_9xPm1XOW1qPmBgdxVmz_MRkY9pBMEgggN9nl0m0BEiIz-hJ3oH3bTbgkSSYHXhSlqRdQPLHlUcC83bJBXT9DvFwqFF1JBqEQMojVrMnGDA97ImJ4RlTdjFcNCcWfMbVW54399-__VrftpsfN3frr5vWdH1XWjZwQMM41WBHzkAa6IQQvNfWSkQwho1Ih9kCBxj4QPUsZiOBIafUjrI7b-6O3jnCVj0lt4O0VxGcen2I6UFBKs54VFLayeq-BrWCTVzDILtZ1OpMp7XA6vp0dD2l-HvBXNQ2Lqk2lhWfaG2YjhOv1OcjZVLMOaF9n8qoelmS6tXbkir75chm4wqU2st_4L_2WJLt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901580892</pqid></control><display><type>article</type><title>Performance analysis of a novel small-scale radial turbine with adjustable nozzle for ocean thermal energy conversion</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ge, Yunzheng ; Peng, Jingping ; Chen, Fengyun ; Liu, Lei ; Zhang, Wanjun ; Liu, Weimin ; Sun, Jinju</creator><creatorcontrib>Ge, Yunzheng ; Peng, Jingping ; Chen, Fengyun ; Liu, Lei ; Zhang, Wanjun ; Liu, Weimin ; Sun, Jinju</creatorcontrib><description>Ocean thermal energy is acknowledged as one of the most promising ocean renewable energy sources in low latitude sea areas. In the ocean thermal energy conversion system, the turbine plays a significant role, and it is responsible for converting the working medium enthalpy into the shaft output power. The present study is focused on the performance analysis of a novel radial inflow turbine with an adjustable nozzle in the OTEC system in order to adapt to the changing operating conditions of the turbine, which vary with the change in seawater temperature. At the design point, the predicted overall isentropic efficiency is 86.5%, and the shaft output power is 15.3 kW, slightly higher than the expected 15 kW. Furthermore, a parametric study is performed, respectively, for the nozzle vane stagger angle and the nozzle-impeller radial clearance to explore the favorable geometric parameters for different conditions. The turbine’s overall efficiency increases slightly with deceasing nozzle-impeller radial clearance, and the variation of the nozzle vane stagger angle is much more influential on the turbine shaft power and overall efficiency. The optimum stagger angle point moves from 32° to 36° gradually with the increase in nozzle-impeller clearance. Finally, the feasibility of an adjustable nozzle for the turbine under off-design conditions was verified by combining the radial clearance and nozzle stagger angle.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0174947</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Clearances ; Efficiency ; Enthalpy ; Impellers ; Nozzles ; Ocean thermal energy conversion ; Renewable energy sources ; Seawater ; Thermal energy ; Turbines</subject><ispartof>AIP advances, 2023-12, Vol.13 (12), p.125121-125121-12</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-162aec120baf821a7ca344425bff7eeacc18e06dfa2aa6260bd4dc7a1e200f873</cites><orcidid>0000-0003-0823-4162 ; 0000-0003-4164-1464 ; 0000-0002-1014-3916 ; 0009-0009-7137-6447 ; 0000-0003-0212-2709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Ge, Yunzheng</creatorcontrib><creatorcontrib>Peng, Jingping</creatorcontrib><creatorcontrib>Chen, Fengyun</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zhang, Wanjun</creatorcontrib><creatorcontrib>Liu, Weimin</creatorcontrib><creatorcontrib>Sun, Jinju</creatorcontrib><title>Performance analysis of a novel small-scale radial turbine with adjustable nozzle for ocean thermal energy conversion</title><title>AIP advances</title><description>Ocean thermal energy is acknowledged as one of the most promising ocean renewable energy sources in low latitude sea areas. In the ocean thermal energy conversion system, the turbine plays a significant role, and it is responsible for converting the working medium enthalpy into the shaft output power. The present study is focused on the performance analysis of a novel radial inflow turbine with an adjustable nozzle in the OTEC system in order to adapt to the changing operating conditions of the turbine, which vary with the change in seawater temperature. At the design point, the predicted overall isentropic efficiency is 86.5%, and the shaft output power is 15.3 kW, slightly higher than the expected 15 kW. Furthermore, a parametric study is performed, respectively, for the nozzle vane stagger angle and the nozzle-impeller radial clearance to explore the favorable geometric parameters for different conditions. The turbine’s overall efficiency increases slightly with deceasing nozzle-impeller radial clearance, and the variation of the nozzle vane stagger angle is much more influential on the turbine shaft power and overall efficiency. The optimum stagger angle point moves from 32° to 36° gradually with the increase in nozzle-impeller clearance. Finally, the feasibility of an adjustable nozzle for the turbine under off-design conditions was verified by combining the radial clearance and nozzle stagger angle.</description><subject>Clearances</subject><subject>Efficiency</subject><subject>Enthalpy</subject><subject>Impellers</subject><subject>Nozzles</subject><subject>Ocean thermal energy conversion</subject><subject>Renewable energy sources</subject><subject>Seawater</subject><subject>Thermal energy</subject><subject>Turbines</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUFrHCEYhofSQEKyh_wDoacWJlHHGWeOZWmTwEJ7aM7y6XwmLq6m6qTs_vqabAg91csr-vB88H5Nc8noFaNDd91fUSbFJOSH5oyzfmw7zoeP_9xPm1XOW1qPmBgdxVmz_MRkY9pBMEgggN9nl0m0BEiIz-hJ3oH3bTbgkSSYHXhSlqRdQPLHlUcC83bJBXT9DvFwqFF1JBqEQMojVrMnGDA97ImJ4RlTdjFcNCcWfMbVW54399-__VrftpsfN3frr5vWdH1XWjZwQMM41WBHzkAa6IQQvNfWSkQwho1Ih9kCBxj4QPUsZiOBIafUjrI7b-6O3jnCVj0lt4O0VxGcen2I6UFBKs54VFLayeq-BrWCTVzDILtZ1OpMp7XA6vp0dD2l-HvBXNQ2Lqk2lhWfaG2YjhOv1OcjZVLMOaF9n8qoelmS6tXbkir75chm4wqU2st_4L_2WJLt</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Ge, Yunzheng</creator><creator>Peng, Jingping</creator><creator>Chen, Fengyun</creator><creator>Liu, Lei</creator><creator>Zhang, Wanjun</creator><creator>Liu, Weimin</creator><creator>Sun, Jinju</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0823-4162</orcidid><orcidid>https://orcid.org/0000-0003-4164-1464</orcidid><orcidid>https://orcid.org/0000-0002-1014-3916</orcidid><orcidid>https://orcid.org/0009-0009-7137-6447</orcidid><orcidid>https://orcid.org/0000-0003-0212-2709</orcidid></search><sort><creationdate>20231201</creationdate><title>Performance analysis of a novel small-scale radial turbine with adjustable nozzle for ocean thermal energy conversion</title><author>Ge, Yunzheng ; Peng, Jingping ; Chen, Fengyun ; Liu, Lei ; Zhang, Wanjun ; Liu, Weimin ; Sun, Jinju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-162aec120baf821a7ca344425bff7eeacc18e06dfa2aa6260bd4dc7a1e200f873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clearances</topic><topic>Efficiency</topic><topic>Enthalpy</topic><topic>Impellers</topic><topic>Nozzles</topic><topic>Ocean thermal energy conversion</topic><topic>Renewable energy sources</topic><topic>Seawater</topic><topic>Thermal energy</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Yunzheng</creatorcontrib><creatorcontrib>Peng, Jingping</creatorcontrib><creatorcontrib>Chen, Fengyun</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zhang, Wanjun</creatorcontrib><creatorcontrib>Liu, Weimin</creatorcontrib><creatorcontrib>Sun, Jinju</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Yunzheng</au><au>Peng, Jingping</au><au>Chen, Fengyun</au><au>Liu, Lei</au><au>Zhang, Wanjun</au><au>Liu, Weimin</au><au>Sun, Jinju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance analysis of a novel small-scale radial turbine with adjustable nozzle for ocean thermal energy conversion</atitle><jtitle>AIP advances</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>13</volume><issue>12</issue><spage>125121</spage><epage>125121-12</epage><pages>125121-125121-12</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Ocean thermal energy is acknowledged as one of the most promising ocean renewable energy sources in low latitude sea areas. In the ocean thermal energy conversion system, the turbine plays a significant role, and it is responsible for converting the working medium enthalpy into the shaft output power. The present study is focused on the performance analysis of a novel radial inflow turbine with an adjustable nozzle in the OTEC system in order to adapt to the changing operating conditions of the turbine, which vary with the change in seawater temperature. At the design point, the predicted overall isentropic efficiency is 86.5%, and the shaft output power is 15.3 kW, slightly higher than the expected 15 kW. Furthermore, a parametric study is performed, respectively, for the nozzle vane stagger angle and the nozzle-impeller radial clearance to explore the favorable geometric parameters for different conditions. The turbine’s overall efficiency increases slightly with deceasing nozzle-impeller radial clearance, and the variation of the nozzle vane stagger angle is much more influential on the turbine shaft power and overall efficiency. The optimum stagger angle point moves from 32° to 36° gradually with the increase in nozzle-impeller clearance. Finally, the feasibility of an adjustable nozzle for the turbine under off-design conditions was verified by combining the radial clearance and nozzle stagger angle.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0174947</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0823-4162</orcidid><orcidid>https://orcid.org/0000-0003-4164-1464</orcidid><orcidid>https://orcid.org/0000-0002-1014-3916</orcidid><orcidid>https://orcid.org/0009-0009-7137-6447</orcidid><orcidid>https://orcid.org/0000-0003-0212-2709</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2158-3226 |
ispartof | AIP advances, 2023-12, Vol.13 (12), p.125121-125121-12 |
issn | 2158-3226 2158-3226 |
language | eng |
recordid | cdi_proquest_journals_2901580892 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry |
subjects | Clearances Efficiency Enthalpy Impellers Nozzles Ocean thermal energy conversion Renewable energy sources Seawater Thermal energy Turbines |
title | Performance analysis of a novel small-scale radial turbine with adjustable nozzle for ocean thermal energy conversion |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20analysis%20of%20a%20novel%20small-scale%20radial%20turbine%20with%20adjustable%20nozzle%20for%20ocean%20thermal%20energy%20conversion&rft.jtitle=AIP%20advances&rft.au=Ge,%20Yunzheng&rft.date=2023-12-01&rft.volume=13&rft.issue=12&rft.spage=125121&rft.epage=125121-12&rft.pages=125121-125121-12&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0174947&rft_dat=%3Cproquest_scita%3E2901580892%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901580892&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_77f9fb577f0f4192ba673d4215c3bb4e&rfr_iscdi=true |