Performance analysis of a novel small-scale radial turbine with adjustable nozzle for ocean thermal energy conversion

Ocean thermal energy is acknowledged as one of the most promising ocean renewable energy sources in low latitude sea areas. In the ocean thermal energy conversion system, the turbine plays a significant role, and it is responsible for converting the working medium enthalpy into the shaft output powe...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:AIP advances 2023-12, Vol.13 (12), p.125121-125121-12
Hauptverfasser: Ge, Yunzheng, Peng, Jingping, Chen, Fengyun, Liu, Lei, Zhang, Wanjun, Liu, Weimin, Sun, Jinju
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 125121-12
container_issue 12
container_start_page 125121
container_title AIP advances
container_volume 13
creator Ge, Yunzheng
Peng, Jingping
Chen, Fengyun
Liu, Lei
Zhang, Wanjun
Liu, Weimin
Sun, Jinju
description Ocean thermal energy is acknowledged as one of the most promising ocean renewable energy sources in low latitude sea areas. In the ocean thermal energy conversion system, the turbine plays a significant role, and it is responsible for converting the working medium enthalpy into the shaft output power. The present study is focused on the performance analysis of a novel radial inflow turbine with an adjustable nozzle in the OTEC system in order to adapt to the changing operating conditions of the turbine, which vary with the change in seawater temperature. At the design point, the predicted overall isentropic efficiency is 86.5%, and the shaft output power is 15.3 kW, slightly higher than the expected 15 kW. Furthermore, a parametric study is performed, respectively, for the nozzle vane stagger angle and the nozzle-impeller radial clearance to explore the favorable geometric parameters for different conditions. The turbine’s overall efficiency increases slightly with deceasing nozzle-impeller radial clearance, and the variation of the nozzle vane stagger angle is much more influential on the turbine shaft power and overall efficiency. The optimum stagger angle point moves from 32° to 36° gradually with the increase in nozzle-impeller clearance. Finally, the feasibility of an adjustable nozzle for the turbine under off-design conditions was verified by combining the radial clearance and nozzle stagger angle.
doi_str_mv 10.1063/5.0174947
format Article
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2901580892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_77f9fb577f0f4192ba673d4215c3bb4e</doaj_id><sourcerecordid>2901580892</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-162aec120baf821a7ca344425bff7eeacc18e06dfa2aa6260bd4dc7a1e200f873</originalsourceid><addsrcrecordid>eNp9kUFrHCEYhofSQEKyh_wDoacWJlHHGWeOZWmTwEJ7aM7y6XwmLq6m6qTs_vqabAg91csr-vB88H5Nc8noFaNDd91fUSbFJOSH5oyzfmw7zoeP_9xPm1XOW1qPmBgdxVmz_MRkY9pBMEgggN9nl0m0BEiIz-hJ3oH3bTbgkSSYHXhSlqRdQPLHlUcC83bJBXT9DvFwqFF1JBqEQMojVrMnGDA97ImJ4RlTdjFcNCcWfMbVW54399-__VrftpsfN3frr5vWdH1XWjZwQMM41WBHzkAa6IQQvNfWSkQwho1Ih9kCBxj4QPUsZiOBIafUjrI7b-6O3jnCVj0lt4O0VxGcen2I6UFBKs54VFLayeq-BrWCTVzDILtZ1OpMp7XA6vp0dD2l-HvBXNQ2Lqk2lhWfaG2YjhOv1OcjZVLMOaF9n8qoelmS6tXbkir75chm4wqU2st_4L_2WJLt</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901580892</pqid></control><display><type>article</type><title>Performance analysis of a novel small-scale radial turbine with adjustable nozzle for ocean thermal energy conversion</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Ge, Yunzheng ; Peng, Jingping ; Chen, Fengyun ; Liu, Lei ; Zhang, Wanjun ; Liu, Weimin ; Sun, Jinju</creator><creatorcontrib>Ge, Yunzheng ; Peng, Jingping ; Chen, Fengyun ; Liu, Lei ; Zhang, Wanjun ; Liu, Weimin ; Sun, Jinju</creatorcontrib><description>Ocean thermal energy is acknowledged as one of the most promising ocean renewable energy sources in low latitude sea areas. In the ocean thermal energy conversion system, the turbine plays a significant role, and it is responsible for converting the working medium enthalpy into the shaft output power. The present study is focused on the performance analysis of a novel radial inflow turbine with an adjustable nozzle in the OTEC system in order to adapt to the changing operating conditions of the turbine, which vary with the change in seawater temperature. At the design point, the predicted overall isentropic efficiency is 86.5%, and the shaft output power is 15.3 kW, slightly higher than the expected 15 kW. Furthermore, a parametric study is performed, respectively, for the nozzle vane stagger angle and the nozzle-impeller radial clearance to explore the favorable geometric parameters for different conditions. The turbine’s overall efficiency increases slightly with deceasing nozzle-impeller radial clearance, and the variation of the nozzle vane stagger angle is much more influential on the turbine shaft power and overall efficiency. The optimum stagger angle point moves from 32° to 36° gradually with the increase in nozzle-impeller clearance. Finally, the feasibility of an adjustable nozzle for the turbine under off-design conditions was verified by combining the radial clearance and nozzle stagger angle.</description><identifier>ISSN: 2158-3226</identifier><identifier>EISSN: 2158-3226</identifier><identifier>DOI: 10.1063/5.0174947</identifier><identifier>CODEN: AAIDBI</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Clearances ; Efficiency ; Enthalpy ; Impellers ; Nozzles ; Ocean thermal energy conversion ; Renewable energy sources ; Seawater ; Thermal energy ; Turbines</subject><ispartof>AIP advances, 2023-12, Vol.13 (12), p.125121-125121-12</ispartof><rights>Author(s)</rights><rights>2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c353t-162aec120baf821a7ca344425bff7eeacc18e06dfa2aa6260bd4dc7a1e200f873</cites><orcidid>0000-0003-0823-4162 ; 0000-0003-4164-1464 ; 0000-0002-1014-3916 ; 0009-0009-7137-6447 ; 0000-0003-0212-2709</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,860,2096,27901,27902</link.rule.ids></links><search><creatorcontrib>Ge, Yunzheng</creatorcontrib><creatorcontrib>Peng, Jingping</creatorcontrib><creatorcontrib>Chen, Fengyun</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zhang, Wanjun</creatorcontrib><creatorcontrib>Liu, Weimin</creatorcontrib><creatorcontrib>Sun, Jinju</creatorcontrib><title>Performance analysis of a novel small-scale radial turbine with adjustable nozzle for ocean thermal energy conversion</title><title>AIP advances</title><description>Ocean thermal energy is acknowledged as one of the most promising ocean renewable energy sources in low latitude sea areas. In the ocean thermal energy conversion system, the turbine plays a significant role, and it is responsible for converting the working medium enthalpy into the shaft output power. The present study is focused on the performance analysis of a novel radial inflow turbine with an adjustable nozzle in the OTEC system in order to adapt to the changing operating conditions of the turbine, which vary with the change in seawater temperature. At the design point, the predicted overall isentropic efficiency is 86.5%, and the shaft output power is 15.3 kW, slightly higher than the expected 15 kW. Furthermore, a parametric study is performed, respectively, for the nozzle vane stagger angle and the nozzle-impeller radial clearance to explore the favorable geometric parameters for different conditions. The turbine’s overall efficiency increases slightly with deceasing nozzle-impeller radial clearance, and the variation of the nozzle vane stagger angle is much more influential on the turbine shaft power and overall efficiency. The optimum stagger angle point moves from 32° to 36° gradually with the increase in nozzle-impeller clearance. Finally, the feasibility of an adjustable nozzle for the turbine under off-design conditions was verified by combining the radial clearance and nozzle stagger angle.</description><subject>Clearances</subject><subject>Efficiency</subject><subject>Enthalpy</subject><subject>Impellers</subject><subject>Nozzles</subject><subject>Ocean thermal energy conversion</subject><subject>Renewable energy sources</subject><subject>Seawater</subject><subject>Thermal energy</subject><subject>Turbines</subject><issn>2158-3226</issn><issn>2158-3226</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kUFrHCEYhofSQEKyh_wDoacWJlHHGWeOZWmTwEJ7aM7y6XwmLq6m6qTs_vqabAg91csr-vB88H5Nc8noFaNDd91fUSbFJOSH5oyzfmw7zoeP_9xPm1XOW1qPmBgdxVmz_MRkY9pBMEgggN9nl0m0BEiIz-hJ3oH3bTbgkSSYHXhSlqRdQPLHlUcC83bJBXT9DvFwqFF1JBqEQMojVrMnGDA97ImJ4RlTdjFcNCcWfMbVW54399-__VrftpsfN3frr5vWdH1XWjZwQMM41WBHzkAa6IQQvNfWSkQwho1Ih9kCBxj4QPUsZiOBIafUjrI7b-6O3jnCVj0lt4O0VxGcen2I6UFBKs54VFLayeq-BrWCTVzDILtZ1OpMp7XA6vp0dD2l-HvBXNQ2Lqk2lhWfaG2YjhOv1OcjZVLMOaF9n8qoelmS6tXbkir75chm4wqU2st_4L_2WJLt</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Ge, Yunzheng</creator><creator>Peng, Jingping</creator><creator>Chen, Fengyun</creator><creator>Liu, Lei</creator><creator>Zhang, Wanjun</creator><creator>Liu, Weimin</creator><creator>Sun, Jinju</creator><general>American Institute of Physics</general><general>AIP Publishing LLC</general><scope>AJDQP</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0823-4162</orcidid><orcidid>https://orcid.org/0000-0003-4164-1464</orcidid><orcidid>https://orcid.org/0000-0002-1014-3916</orcidid><orcidid>https://orcid.org/0009-0009-7137-6447</orcidid><orcidid>https://orcid.org/0000-0003-0212-2709</orcidid></search><sort><creationdate>20231201</creationdate><title>Performance analysis of a novel small-scale radial turbine with adjustable nozzle for ocean thermal energy conversion</title><author>Ge, Yunzheng ; Peng, Jingping ; Chen, Fengyun ; Liu, Lei ; Zhang, Wanjun ; Liu, Weimin ; Sun, Jinju</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-162aec120baf821a7ca344425bff7eeacc18e06dfa2aa6260bd4dc7a1e200f873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Clearances</topic><topic>Efficiency</topic><topic>Enthalpy</topic><topic>Impellers</topic><topic>Nozzles</topic><topic>Ocean thermal energy conversion</topic><topic>Renewable energy sources</topic><topic>Seawater</topic><topic>Thermal energy</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ge, Yunzheng</creatorcontrib><creatorcontrib>Peng, Jingping</creatorcontrib><creatorcontrib>Chen, Fengyun</creatorcontrib><creatorcontrib>Liu, Lei</creatorcontrib><creatorcontrib>Zhang, Wanjun</creatorcontrib><creatorcontrib>Liu, Weimin</creatorcontrib><creatorcontrib>Sun, Jinju</creatorcontrib><collection>AIP Open Access Journals</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>AIP advances</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ge, Yunzheng</au><au>Peng, Jingping</au><au>Chen, Fengyun</au><au>Liu, Lei</au><au>Zhang, Wanjun</au><au>Liu, Weimin</au><au>Sun, Jinju</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance analysis of a novel small-scale radial turbine with adjustable nozzle for ocean thermal energy conversion</atitle><jtitle>AIP advances</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>13</volume><issue>12</issue><spage>125121</spage><epage>125121-12</epage><pages>125121-125121-12</pages><issn>2158-3226</issn><eissn>2158-3226</eissn><coden>AAIDBI</coden><abstract>Ocean thermal energy is acknowledged as one of the most promising ocean renewable energy sources in low latitude sea areas. In the ocean thermal energy conversion system, the turbine plays a significant role, and it is responsible for converting the working medium enthalpy into the shaft output power. The present study is focused on the performance analysis of a novel radial inflow turbine with an adjustable nozzle in the OTEC system in order to adapt to the changing operating conditions of the turbine, which vary with the change in seawater temperature. At the design point, the predicted overall isentropic efficiency is 86.5%, and the shaft output power is 15.3 kW, slightly higher than the expected 15 kW. Furthermore, a parametric study is performed, respectively, for the nozzle vane stagger angle and the nozzle-impeller radial clearance to explore the favorable geometric parameters for different conditions. The turbine’s overall efficiency increases slightly with deceasing nozzle-impeller radial clearance, and the variation of the nozzle vane stagger angle is much more influential on the turbine shaft power and overall efficiency. The optimum stagger angle point moves from 32° to 36° gradually with the increase in nozzle-impeller clearance. Finally, the feasibility of an adjustable nozzle for the turbine under off-design conditions was verified by combining the radial clearance and nozzle stagger angle.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0174947</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-0823-4162</orcidid><orcidid>https://orcid.org/0000-0003-4164-1464</orcidid><orcidid>https://orcid.org/0000-0002-1014-3916</orcidid><orcidid>https://orcid.org/0009-0009-7137-6447</orcidid><orcidid>https://orcid.org/0000-0003-0212-2709</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2158-3226
ispartof AIP advances, 2023-12, Vol.13 (12), p.125121-125121-12
issn 2158-3226
2158-3226
language eng
recordid cdi_proquest_journals_2901580892
source DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Clearances
Efficiency
Enthalpy
Impellers
Nozzles
Ocean thermal energy conversion
Renewable energy sources
Seawater
Thermal energy
Turbines
title Performance analysis of a novel small-scale radial turbine with adjustable nozzle for ocean thermal energy conversion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A05%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20analysis%20of%20a%20novel%20small-scale%20radial%20turbine%20with%20adjustable%20nozzle%20for%20ocean%20thermal%20energy%20conversion&rft.jtitle=AIP%20advances&rft.au=Ge,%20Yunzheng&rft.date=2023-12-01&rft.volume=13&rft.issue=12&rft.spage=125121&rft.epage=125121-12&rft.pages=125121-125121-12&rft.issn=2158-3226&rft.eissn=2158-3226&rft.coden=AAIDBI&rft_id=info:doi/10.1063/5.0174947&rft_dat=%3Cproquest_scita%3E2901580892%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901580892&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_77f9fb577f0f4192ba673d4215c3bb4e&rfr_iscdi=true