Optimized machine‐learning methods for predicting the long‐term viscoelastic behavior of heterogeneous concrete mixtures
Long‐term creep compliance is one of the most important mechanical properties for evaluating the long‐term behavior of concrete structures. This paper aims to optimize machine‐learning models to predict this viscoelastic property. The most relevant dataset available in the literature is considered,...
Gespeichert in:
Veröffentlicht in: | Structural concrete : journal of the FIB 2023-12, Vol.24 (6), p.7466-7481 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 7481 |
---|---|
container_issue | 6 |
container_start_page | 7466 |
container_title | Structural concrete : journal of the FIB |
container_volume | 24 |
creator | Nguyen‐Sy, Tuan Thai, Minh‐Quan Vu, Minh‐Ngoc |
description | Long‐term creep compliance is one of the most important mechanical properties for evaluating the long‐term behavior of concrete structures. This paper aims to optimize machine‐learning models to predict this viscoelastic property. The most relevant dataset available in the literature is considered, cleaned, and preprocessed to optimize the outcome. The advanced XGBoost model, which is to be the most effective shallow machine‐learning model for modeling tabular datasets, is employed in this study to maximize model accuracy. Short‐term creep compliances of a given sample at typical ages are used as input features to model the long‐term creep compliance of concrete. This approach outperforms standard machine‐learning approaches that do not include short‐term creep as an input feature. Indeed, the short‐term behavior of concrete strongly influents its long‐term one. The optimized machine model presented herein is accurate and useful for practical applications. It uses input features that are easy to obtain to predict long‐term creep compliance up to several decades, which is difficult and expensive to measure. |
doi_str_mv | 10.1002/suco.202300246 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2901570020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901570020</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3176-ebacc0a2eaba2842aff7b335cbe76a8e4b3d82ce67f62510f424255c5097e4943</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRSMEEqWwZW2JdYrt2HGyRBUvqVIX0LXlOJPGVRIHOykPseAT-Ea-BFdFsGQ1M3fOnZFuFJ0TPCMY00s_ajujmCZhYOlBNCGCk1ikLDsMPUtZzIgQx9GJ95uAhJ5PovdlP5jWvEGJWqVr08HXx2cDynWmW6MWhtqWHlXWod5BafSwk4caUGO7dUAHcC3aGq8tNMoPRqMCarU1wWArVEPY2zV0YEePtO20CwpqzcswOvCn0VGlGg9nP3UarW6uH-d38WJ5ez-_WsQ6ISKNoVBaY0VBFYpmjKqqEkWScF2ASFUGrEjKjGpIRZVSTnDFKKOca45zASxnyTS62N_tnX0awQ9yY0fXhZeS5phwEeLAgZrtKe2s9w4q2TvTKvcqCZa7hOUuYfmbcDDke8OzaeD1H1o-rObLP-83dLGFqg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901570020</pqid></control><display><type>article</type><title>Optimized machine‐learning methods for predicting the long‐term viscoelastic behavior of heterogeneous concrete mixtures</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Nguyen‐Sy, Tuan ; Thai, Minh‐Quan ; Vu, Minh‐Ngoc</creator><creatorcontrib>Nguyen‐Sy, Tuan ; Thai, Minh‐Quan ; Vu, Minh‐Ngoc</creatorcontrib><description>Long‐term creep compliance is one of the most important mechanical properties for evaluating the long‐term behavior of concrete structures. This paper aims to optimize machine‐learning models to predict this viscoelastic property. The most relevant dataset available in the literature is considered, cleaned, and preprocessed to optimize the outcome. The advanced XGBoost model, which is to be the most effective shallow machine‐learning model for modeling tabular datasets, is employed in this study to maximize model accuracy. Short‐term creep compliances of a given sample at typical ages are used as input features to model the long‐term creep compliance of concrete. This approach outperforms standard machine‐learning approaches that do not include short‐term creep as an input feature. Indeed, the short‐term behavior of concrete strongly influents its long‐term one. The optimized machine model presented herein is accurate and useful for practical applications. It uses input features that are easy to obtain to predict long‐term creep compliance up to several decades, which is difficult and expensive to measure.</description><identifier>ISSN: 1464-4177</identifier><identifier>EISSN: 1751-7648</identifier><identifier>DOI: 10.1002/suco.202300246</identifier><language>eng</language><publisher>Weinheim: WILEY‐VCH Verlag GmbH & Co. KGaA</publisher><subject>Compliance ; Concrete structures ; Datasets ; heterogeneous concrete mixtures ; Influents ; long‐term creep compliance ; Machine learning ; Mechanical properties ; Model accuracy ; viscoelastic ; Viscoelasticity ; XGBoost</subject><ispartof>Structural concrete : journal of the FIB, 2023-12, Vol.24 (6), p.7466-7481</ispartof><rights>2023 . International Federation for Structural Concrete</rights><rights>2023 fib. International Federation for Structural Concrete</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3176-ebacc0a2eaba2842aff7b335cbe76a8e4b3d82ce67f62510f424255c5097e4943</citedby><cites>FETCH-LOGICAL-c3176-ebacc0a2eaba2842aff7b335cbe76a8e4b3d82ce67f62510f424255c5097e4943</cites><orcidid>0000-0001-8968-3394</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsuco.202300246$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsuco.202300246$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Nguyen‐Sy, Tuan</creatorcontrib><creatorcontrib>Thai, Minh‐Quan</creatorcontrib><creatorcontrib>Vu, Minh‐Ngoc</creatorcontrib><title>Optimized machine‐learning methods for predicting the long‐term viscoelastic behavior of heterogeneous concrete mixtures</title><title>Structural concrete : journal of the FIB</title><description>Long‐term creep compliance is one of the most important mechanical properties for evaluating the long‐term behavior of concrete structures. This paper aims to optimize machine‐learning models to predict this viscoelastic property. The most relevant dataset available in the literature is considered, cleaned, and preprocessed to optimize the outcome. The advanced XGBoost model, which is to be the most effective shallow machine‐learning model for modeling tabular datasets, is employed in this study to maximize model accuracy. Short‐term creep compliances of a given sample at typical ages are used as input features to model the long‐term creep compliance of concrete. This approach outperforms standard machine‐learning approaches that do not include short‐term creep as an input feature. Indeed, the short‐term behavior of concrete strongly influents its long‐term one. The optimized machine model presented herein is accurate and useful for practical applications. It uses input features that are easy to obtain to predict long‐term creep compliance up to several decades, which is difficult and expensive to measure.</description><subject>Compliance</subject><subject>Concrete structures</subject><subject>Datasets</subject><subject>heterogeneous concrete mixtures</subject><subject>Influents</subject><subject>long‐term creep compliance</subject><subject>Machine learning</subject><subject>Mechanical properties</subject><subject>Model accuracy</subject><subject>viscoelastic</subject><subject>Viscoelasticity</subject><subject>XGBoost</subject><issn>1464-4177</issn><issn>1751-7648</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRSMEEqWwZW2JdYrt2HGyRBUvqVIX0LXlOJPGVRIHOykPseAT-Ea-BFdFsGQ1M3fOnZFuFJ0TPCMY00s_ajujmCZhYOlBNCGCk1ikLDsMPUtZzIgQx9GJ95uAhJ5PovdlP5jWvEGJWqVr08HXx2cDynWmW6MWhtqWHlXWod5BafSwk4caUGO7dUAHcC3aGq8tNMoPRqMCarU1wWArVEPY2zV0YEePtO20CwpqzcswOvCn0VGlGg9nP3UarW6uH-d38WJ5ez-_WsQ6ISKNoVBaY0VBFYpmjKqqEkWScF2ASFUGrEjKjGpIRZVSTnDFKKOca45zASxnyTS62N_tnX0awQ9yY0fXhZeS5phwEeLAgZrtKe2s9w4q2TvTKvcqCZa7hOUuYfmbcDDke8OzaeD1H1o-rObLP-83dLGFqg</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Nguyen‐Sy, Tuan</creator><creator>Thai, Minh‐Quan</creator><creator>Vu, Minh‐Ngoc</creator><general>WILEY‐VCH Verlag GmbH & Co. KGaA</general><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QQ</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-8968-3394</orcidid></search><sort><creationdate>202312</creationdate><title>Optimized machine‐learning methods for predicting the long‐term viscoelastic behavior of heterogeneous concrete mixtures</title><author>Nguyen‐Sy, Tuan ; Thai, Minh‐Quan ; Vu, Minh‐Ngoc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3176-ebacc0a2eaba2842aff7b335cbe76a8e4b3d82ce67f62510f424255c5097e4943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Compliance</topic><topic>Concrete structures</topic><topic>Datasets</topic><topic>heterogeneous concrete mixtures</topic><topic>Influents</topic><topic>long‐term creep compliance</topic><topic>Machine learning</topic><topic>Mechanical properties</topic><topic>Model accuracy</topic><topic>viscoelastic</topic><topic>Viscoelasticity</topic><topic>XGBoost</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nguyen‐Sy, Tuan</creatorcontrib><creatorcontrib>Thai, Minh‐Quan</creatorcontrib><creatorcontrib>Vu, Minh‐Ngoc</creatorcontrib><collection>CrossRef</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Structural concrete : journal of the FIB</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nguyen‐Sy, Tuan</au><au>Thai, Minh‐Quan</au><au>Vu, Minh‐Ngoc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimized machine‐learning methods for predicting the long‐term viscoelastic behavior of heterogeneous concrete mixtures</atitle><jtitle>Structural concrete : journal of the FIB</jtitle><date>2023-12</date><risdate>2023</risdate><volume>24</volume><issue>6</issue><spage>7466</spage><epage>7481</epage><pages>7466-7481</pages><issn>1464-4177</issn><eissn>1751-7648</eissn><abstract>Long‐term creep compliance is one of the most important mechanical properties for evaluating the long‐term behavior of concrete structures. This paper aims to optimize machine‐learning models to predict this viscoelastic property. The most relevant dataset available in the literature is considered, cleaned, and preprocessed to optimize the outcome. The advanced XGBoost model, which is to be the most effective shallow machine‐learning model for modeling tabular datasets, is employed in this study to maximize model accuracy. Short‐term creep compliances of a given sample at typical ages are used as input features to model the long‐term creep compliance of concrete. This approach outperforms standard machine‐learning approaches that do not include short‐term creep as an input feature. Indeed, the short‐term behavior of concrete strongly influents its long‐term one. The optimized machine model presented herein is accurate and useful for practical applications. It uses input features that are easy to obtain to predict long‐term creep compliance up to several decades, which is difficult and expensive to measure.</abstract><cop>Weinheim</cop><pub>WILEY‐VCH Verlag GmbH & Co. KGaA</pub><doi>10.1002/suco.202300246</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-8968-3394</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1464-4177 |
ispartof | Structural concrete : journal of the FIB, 2023-12, Vol.24 (6), p.7466-7481 |
issn | 1464-4177 1751-7648 |
language | eng |
recordid | cdi_proquest_journals_2901570020 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Compliance Concrete structures Datasets heterogeneous concrete mixtures Influents long‐term creep compliance Machine learning Mechanical properties Model accuracy viscoelastic Viscoelasticity XGBoost |
title | Optimized machine‐learning methods for predicting the long‐term viscoelastic behavior of heterogeneous concrete mixtures |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T16%3A53%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimized%20machine%E2%80%90learning%20methods%20for%20predicting%20the%20long%E2%80%90term%20viscoelastic%20behavior%20of%20heterogeneous%20concrete%20mixtures&rft.jtitle=Structural%20concrete%20:%20journal%20of%20the%20FIB&rft.au=Nguyen%E2%80%90Sy,%20Tuan&rft.date=2023-12&rft.volume=24&rft.issue=6&rft.spage=7466&rft.epage=7481&rft.pages=7466-7481&rft.issn=1464-4177&rft.eissn=1751-7648&rft_id=info:doi/10.1002/suco.202300246&rft_dat=%3Cproquest_cross%3E2901570020%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901570020&rft_id=info:pmid/&rfr_iscdi=true |