Synthesis and Analysis of Well‐Defined Copolymers via by Combination ROP Technique

Herein, the poly(ɛ‐caprolactone)‐poly(ethylene glycol)‐poly(ɛ‐caprolactone) (PCL‐PEG‐PCL) macro xanthate reversible addition–fragmentation chain‐transfer agent is obtained on the polyethylene glycol (PEG) (600, 1000, and 1500 g mol −1 ) block, after the addition of ɛ‐caprolactone via ring‐opening po...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular reaction engineering 2023-12, Vol.17 (6)
Hauptverfasser: Yildiko, Umit, Tanriverdi, Aslihan Aycan, Ata, Ahmet Cagri, Cakmak, Ismail, Tekes, Ahmet Turan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 6
container_start_page
container_title Macromolecular reaction engineering
container_volume 17
creator Yildiko, Umit
Tanriverdi, Aslihan Aycan
Ata, Ahmet Cagri
Cakmak, Ismail
Tekes, Ahmet Turan
description Herein, the poly(ɛ‐caprolactone)‐poly(ethylene glycol)‐poly(ɛ‐caprolactone) (PCL‐PEG‐PCL) macro xanthate reversible addition–fragmentation chain‐transfer agent is obtained on the polyethylene glycol (PEG) (600, 1000, and 1500 g mol −1 ) block, after the addition of ɛ‐caprolactone via ring‐opening polymerization. Then, poly (styrene‐b‐ɛ‐caprolactone‐b‐PEG‐b‐ɛ‐caprolactone‐b‐styrene) pentablock copolymer is synthesized reversible addition–fragmentation chain‐transfer (RAFT) solution polymerization technique via mediated PCL‐PEG‐PCL xanthate macro‐RAFT agents and 2,2′‐azobisisobutyronitrile as initiator. The products are demonstrated using Fourier transform infrared spectrophotometer (FT‐IR), proton nuclear magnetic resonance ( 1 H‐NMR), carbon nuclear magnetic resonance ( 13 C‐NMR), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC) analyses. First‐order linear kinetic graphs of the reaction mechanism are observed with an increase in molecular weights ( M W ) between 16 000 and 36 000 g mol −1 . The narrow dispersity ( Đ  = 1.40–1.48) polymer formation of styrene (St) controlled by RAFT polymerization confirms the increase in molecular weight according to the polymerization time. The reaction kinetics are first order and the rate constants are found to be k 1  = 6.16 × 10 −4 s −1 , k 2  = 6.91 × 10 −4  s −1 and k 3  = 7.33 × 10 −4  s −1 . Thermal and spectroscopic analyses prove that the reactions are carried out successfully.
doi_str_mv 10.1002/mren.202300036
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2901560029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901560029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-aa6445814960490679ecd5b413d359a3e3de0b1dc8f4c65da56fbb5c2e1045ca3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKtXzwHPWyef3T2W-gmFilb0FrJJlqbsZmuyCnvzJ_gb_SVuqXQu78zwMi_zIHRJYEIA6HUTXZhQoAwAmDxCI5JLmuWM5ceHnr6forOUNgBiqGKEVi996NYu-YR1sHgWdN3vhrbCb66uf79_blzlg7N43m7bum9cTPjLa1z2w6YpfdCdbwN-Xj7hlTPr4D8-3Tk6qXSd3MW_jtHr3e1q_pAtlveP89kiMwymXaa15FzkhBcSeAFyWjhjRckJs0wUmjlmHZTEmrziRgqrhazKUhjqCHBhNBujq_3dbWyH2NSpTfsZhxeSogUQIQcsxeCa7F0mtilFV6lt9I2OvSKgduTUjpw6kGN_dYdiew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901560029</pqid></control><display><type>article</type><title>Synthesis and Analysis of Well‐Defined Copolymers via by Combination ROP Technique</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yildiko, Umit ; Tanriverdi, Aslihan Aycan ; Ata, Ahmet Cagri ; Cakmak, Ismail ; Tekes, Ahmet Turan</creator><creatorcontrib>Yildiko, Umit ; Tanriverdi, Aslihan Aycan ; Ata, Ahmet Cagri ; Cakmak, Ismail ; Tekes, Ahmet Turan</creatorcontrib><description>Herein, the poly(ɛ‐caprolactone)‐poly(ethylene glycol)‐poly(ɛ‐caprolactone) (PCL‐PEG‐PCL) macro xanthate reversible addition–fragmentation chain‐transfer agent is obtained on the polyethylene glycol (PEG) (600, 1000, and 1500 g mol −1 ) block, after the addition of ɛ‐caprolactone via ring‐opening polymerization. Then, poly (styrene‐b‐ɛ‐caprolactone‐b‐PEG‐b‐ɛ‐caprolactone‐b‐styrene) pentablock copolymer is synthesized reversible addition–fragmentation chain‐transfer (RAFT) solution polymerization technique via mediated PCL‐PEG‐PCL xanthate macro‐RAFT agents and 2,2′‐azobisisobutyronitrile as initiator. The products are demonstrated using Fourier transform infrared spectrophotometer (FT‐IR), proton nuclear magnetic resonance ( 1 H‐NMR), carbon nuclear magnetic resonance ( 13 C‐NMR), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC) analyses. First‐order linear kinetic graphs of the reaction mechanism are observed with an increase in molecular weights ( M W ) between 16 000 and 36 000 g mol −1 . The narrow dispersity ( Đ  = 1.40–1.48) polymer formation of styrene (St) controlled by RAFT polymerization confirms the increase in molecular weight according to the polymerization time. The reaction kinetics are first order and the rate constants are found to be k 1  = 6.16 × 10 −4 s −1 , k 2  = 6.91 × 10 −4  s −1 and k 3  = 7.33 × 10 −4  s −1 . Thermal and spectroscopic analyses prove that the reactions are carried out successfully.</description><identifier>ISSN: 1862-832X</identifier><identifier>EISSN: 1862-8338</identifier><identifier>DOI: 10.1002/mren.202300036</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Addition polymerization ; Azobisisobutyronitrile ; Chemical synthesis ; Copolymers ; Fourier transforms ; Fragmentation ; Gel chromatography ; Infrared spectrophotometers ; Molecular weight ; NMR ; Nuclear magnetic resonance ; Polyethylene glycol ; Polymerization ; Rate constants ; Reaction kinetics ; Reaction mechanisms ; Reagents ; Ring opening polymerization ; Solution polymerization ; Styrenes</subject><ispartof>Macromolecular reaction engineering, 2023-12, Vol.17 (6)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-aa6445814960490679ecd5b413d359a3e3de0b1dc8f4c65da56fbb5c2e1045ca3</citedby><cites>FETCH-LOGICAL-c307t-aa6445814960490679ecd5b413d359a3e3de0b1dc8f4c65da56fbb5c2e1045ca3</cites><orcidid>0000-0002-9942-7367 ; 0000-0001-5811-8253 ; 0000-0002-2296-2265 ; 0000-0002-3191-7570 ; 0000-0001-8627-9038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Yildiko, Umit</creatorcontrib><creatorcontrib>Tanriverdi, Aslihan Aycan</creatorcontrib><creatorcontrib>Ata, Ahmet Cagri</creatorcontrib><creatorcontrib>Cakmak, Ismail</creatorcontrib><creatorcontrib>Tekes, Ahmet Turan</creatorcontrib><title>Synthesis and Analysis of Well‐Defined Copolymers via by Combination ROP Technique</title><title>Macromolecular reaction engineering</title><description>Herein, the poly(ɛ‐caprolactone)‐poly(ethylene glycol)‐poly(ɛ‐caprolactone) (PCL‐PEG‐PCL) macro xanthate reversible addition–fragmentation chain‐transfer agent is obtained on the polyethylene glycol (PEG) (600, 1000, and 1500 g mol −1 ) block, after the addition of ɛ‐caprolactone via ring‐opening polymerization. Then, poly (styrene‐b‐ɛ‐caprolactone‐b‐PEG‐b‐ɛ‐caprolactone‐b‐styrene) pentablock copolymer is synthesized reversible addition–fragmentation chain‐transfer (RAFT) solution polymerization technique via mediated PCL‐PEG‐PCL xanthate macro‐RAFT agents and 2,2′‐azobisisobutyronitrile as initiator. The products are demonstrated using Fourier transform infrared spectrophotometer (FT‐IR), proton nuclear magnetic resonance ( 1 H‐NMR), carbon nuclear magnetic resonance ( 13 C‐NMR), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC) analyses. First‐order linear kinetic graphs of the reaction mechanism are observed with an increase in molecular weights ( M W ) between 16 000 and 36 000 g mol −1 . The narrow dispersity ( Đ  = 1.40–1.48) polymer formation of styrene (St) controlled by RAFT polymerization confirms the increase in molecular weight according to the polymerization time. The reaction kinetics are first order and the rate constants are found to be k 1  = 6.16 × 10 −4 s −1 , k 2  = 6.91 × 10 −4  s −1 and k 3  = 7.33 × 10 −4  s −1 . Thermal and spectroscopic analyses prove that the reactions are carried out successfully.</description><subject>Addition polymerization</subject><subject>Azobisisobutyronitrile</subject><subject>Chemical synthesis</subject><subject>Copolymers</subject><subject>Fourier transforms</subject><subject>Fragmentation</subject><subject>Gel chromatography</subject><subject>Infrared spectrophotometers</subject><subject>Molecular weight</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Polyethylene glycol</subject><subject>Polymerization</subject><subject>Rate constants</subject><subject>Reaction kinetics</subject><subject>Reaction mechanisms</subject><subject>Reagents</subject><subject>Ring opening polymerization</subject><subject>Solution polymerization</subject><subject>Styrenes</subject><issn>1862-832X</issn><issn>1862-8338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKtXzwHPWyef3T2W-gmFilb0FrJJlqbsZmuyCnvzJ_gb_SVuqXQu78zwMi_zIHRJYEIA6HUTXZhQoAwAmDxCI5JLmuWM5ceHnr6forOUNgBiqGKEVi996NYu-YR1sHgWdN3vhrbCb66uf79_blzlg7N43m7bum9cTPjLa1z2w6YpfdCdbwN-Xj7hlTPr4D8-3Tk6qXSd3MW_jtHr3e1q_pAtlveP89kiMwymXaa15FzkhBcSeAFyWjhjRckJs0wUmjlmHZTEmrziRgqrhazKUhjqCHBhNBujq_3dbWyH2NSpTfsZhxeSogUQIQcsxeCa7F0mtilFV6lt9I2OvSKgduTUjpw6kGN_dYdiew</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Yildiko, Umit</creator><creator>Tanriverdi, Aslihan Aycan</creator><creator>Ata, Ahmet Cagri</creator><creator>Cakmak, Ismail</creator><creator>Tekes, Ahmet Turan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9942-7367</orcidid><orcidid>https://orcid.org/0000-0001-5811-8253</orcidid><orcidid>https://orcid.org/0000-0002-2296-2265</orcidid><orcidid>https://orcid.org/0000-0002-3191-7570</orcidid><orcidid>https://orcid.org/0000-0001-8627-9038</orcidid></search><sort><creationdate>202312</creationdate><title>Synthesis and Analysis of Well‐Defined Copolymers via by Combination ROP Technique</title><author>Yildiko, Umit ; Tanriverdi, Aslihan Aycan ; Ata, Ahmet Cagri ; Cakmak, Ismail ; Tekes, Ahmet Turan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-aa6445814960490679ecd5b413d359a3e3de0b1dc8f4c65da56fbb5c2e1045ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Addition polymerization</topic><topic>Azobisisobutyronitrile</topic><topic>Chemical synthesis</topic><topic>Copolymers</topic><topic>Fourier transforms</topic><topic>Fragmentation</topic><topic>Gel chromatography</topic><topic>Infrared spectrophotometers</topic><topic>Molecular weight</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Polyethylene glycol</topic><topic>Polymerization</topic><topic>Rate constants</topic><topic>Reaction kinetics</topic><topic>Reaction mechanisms</topic><topic>Reagents</topic><topic>Ring opening polymerization</topic><topic>Solution polymerization</topic><topic>Styrenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yildiko, Umit</creatorcontrib><creatorcontrib>Tanriverdi, Aslihan Aycan</creatorcontrib><creatorcontrib>Ata, Ahmet Cagri</creatorcontrib><creatorcontrib>Cakmak, Ismail</creatorcontrib><creatorcontrib>Tekes, Ahmet Turan</creatorcontrib><collection>CrossRef</collection><jtitle>Macromolecular reaction engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yildiko, Umit</au><au>Tanriverdi, Aslihan Aycan</au><au>Ata, Ahmet Cagri</au><au>Cakmak, Ismail</au><au>Tekes, Ahmet Turan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Analysis of Well‐Defined Copolymers via by Combination ROP Technique</atitle><jtitle>Macromolecular reaction engineering</jtitle><date>2023-12</date><risdate>2023</risdate><volume>17</volume><issue>6</issue><issn>1862-832X</issn><eissn>1862-8338</eissn><abstract>Herein, the poly(ɛ‐caprolactone)‐poly(ethylene glycol)‐poly(ɛ‐caprolactone) (PCL‐PEG‐PCL) macro xanthate reversible addition–fragmentation chain‐transfer agent is obtained on the polyethylene glycol (PEG) (600, 1000, and 1500 g mol −1 ) block, after the addition of ɛ‐caprolactone via ring‐opening polymerization. Then, poly (styrene‐b‐ɛ‐caprolactone‐b‐PEG‐b‐ɛ‐caprolactone‐b‐styrene) pentablock copolymer is synthesized reversible addition–fragmentation chain‐transfer (RAFT) solution polymerization technique via mediated PCL‐PEG‐PCL xanthate macro‐RAFT agents and 2,2′‐azobisisobutyronitrile as initiator. The products are demonstrated using Fourier transform infrared spectrophotometer (FT‐IR), proton nuclear magnetic resonance ( 1 H‐NMR), carbon nuclear magnetic resonance ( 13 C‐NMR), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC) analyses. First‐order linear kinetic graphs of the reaction mechanism are observed with an increase in molecular weights ( M W ) between 16 000 and 36 000 g mol −1 . The narrow dispersity ( Đ  = 1.40–1.48) polymer formation of styrene (St) controlled by RAFT polymerization confirms the increase in molecular weight according to the polymerization time. The reaction kinetics are first order and the rate constants are found to be k 1  = 6.16 × 10 −4 s −1 , k 2  = 6.91 × 10 −4  s −1 and k 3  = 7.33 × 10 −4  s −1 . Thermal and spectroscopic analyses prove that the reactions are carried out successfully.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mren.202300036</doi><orcidid>https://orcid.org/0000-0002-9942-7367</orcidid><orcidid>https://orcid.org/0000-0001-5811-8253</orcidid><orcidid>https://orcid.org/0000-0002-2296-2265</orcidid><orcidid>https://orcid.org/0000-0002-3191-7570</orcidid><orcidid>https://orcid.org/0000-0001-8627-9038</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1862-832X
ispartof Macromolecular reaction engineering, 2023-12, Vol.17 (6)
issn 1862-832X
1862-8338
language eng
recordid cdi_proquest_journals_2901560029
source Wiley Online Library Journals Frontfile Complete
subjects Addition polymerization
Azobisisobutyronitrile
Chemical synthesis
Copolymers
Fourier transforms
Fragmentation
Gel chromatography
Infrared spectrophotometers
Molecular weight
NMR
Nuclear magnetic resonance
Polyethylene glycol
Polymerization
Rate constants
Reaction kinetics
Reaction mechanisms
Reagents
Ring opening polymerization
Solution polymerization
Styrenes
title Synthesis and Analysis of Well‐Defined Copolymers via by Combination ROP Technique
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Analysis%20of%20Well%E2%80%90Defined%20Copolymers%20via%20by%20Combination%20ROP%20Technique&rft.jtitle=Macromolecular%20reaction%20engineering&rft.au=Yildiko,%20Umit&rft.date=2023-12&rft.volume=17&rft.issue=6&rft.issn=1862-832X&rft.eissn=1862-8338&rft_id=info:doi/10.1002/mren.202300036&rft_dat=%3Cproquest_cross%3E2901560029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901560029&rft_id=info:pmid/&rfr_iscdi=true