Synthesis and Analysis of Well‐Defined Copolymers via by Combination ROP Technique
Herein, the poly(ɛ‐caprolactone)‐poly(ethylene glycol)‐poly(ɛ‐caprolactone) (PCL‐PEG‐PCL) macro xanthate reversible addition–fragmentation chain‐transfer agent is obtained on the polyethylene glycol (PEG) (600, 1000, and 1500 g mol −1 ) block, after the addition of ɛ‐caprolactone via ring‐opening po...
Gespeichert in:
Veröffentlicht in: | Macromolecular reaction engineering 2023-12, Vol.17 (6) |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | |
container_title | Macromolecular reaction engineering |
container_volume | 17 |
creator | Yildiko, Umit Tanriverdi, Aslihan Aycan Ata, Ahmet Cagri Cakmak, Ismail Tekes, Ahmet Turan |
description | Herein, the poly(ɛ‐caprolactone)‐poly(ethylene glycol)‐poly(ɛ‐caprolactone) (PCL‐PEG‐PCL) macro xanthate reversible addition–fragmentation chain‐transfer agent is obtained on the polyethylene glycol (PEG) (600, 1000, and 1500 g mol
−1
) block, after the addition of ɛ‐caprolactone via ring‐opening polymerization. Then, poly (styrene‐b‐ɛ‐caprolactone‐b‐PEG‐b‐ɛ‐caprolactone‐b‐styrene) pentablock copolymer is synthesized reversible addition–fragmentation chain‐transfer (RAFT) solution polymerization technique via mediated PCL‐PEG‐PCL xanthate macro‐RAFT agents and 2,2′‐azobisisobutyronitrile as initiator. The products are demonstrated using Fourier transform infrared spectrophotometer (FT‐IR), proton nuclear magnetic resonance (
1
H‐NMR), carbon nuclear magnetic resonance (
13
C‐NMR), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC) analyses. First‐order linear kinetic graphs of the reaction mechanism are observed with an increase in molecular weights (
M
W
) between 16 000 and 36 000 g mol
−1
. The narrow dispersity (
Đ
= 1.40–1.48) polymer formation of styrene (St) controlled by RAFT polymerization confirms the increase in molecular weight according to the polymerization time. The reaction kinetics are first order and the rate constants are found to be
k
1
= 6.16 × 10
−4
s
−1
,
k
2
= 6.91 × 10
−4
s
−1
and
k
3
= 7.33 × 10
−4
s
−1
. Thermal and spectroscopic analyses prove that the reactions are carried out successfully. |
doi_str_mv | 10.1002/mren.202300036 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2901560029</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901560029</sourcerecordid><originalsourceid>FETCH-LOGICAL-c307t-aa6445814960490679ecd5b413d359a3e3de0b1dc8f4c65da56fbb5c2e1045ca3</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKtXzwHPWyef3T2W-gmFilb0FrJJlqbsZmuyCnvzJ_gb_SVuqXQu78zwMi_zIHRJYEIA6HUTXZhQoAwAmDxCI5JLmuWM5ceHnr6forOUNgBiqGKEVi996NYu-YR1sHgWdN3vhrbCb66uf79_blzlg7N43m7bum9cTPjLa1z2w6YpfdCdbwN-Xj7hlTPr4D8-3Tk6qXSd3MW_jtHr3e1q_pAtlveP89kiMwymXaa15FzkhBcSeAFyWjhjRckJs0wUmjlmHZTEmrziRgqrhazKUhjqCHBhNBujq_3dbWyH2NSpTfsZhxeSogUQIQcsxeCa7F0mtilFV6lt9I2OvSKgduTUjpw6kGN_dYdiew</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901560029</pqid></control><display><type>article</type><title>Synthesis and Analysis of Well‐Defined Copolymers via by Combination ROP Technique</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Yildiko, Umit ; Tanriverdi, Aslihan Aycan ; Ata, Ahmet Cagri ; Cakmak, Ismail ; Tekes, Ahmet Turan</creator><creatorcontrib>Yildiko, Umit ; Tanriverdi, Aslihan Aycan ; Ata, Ahmet Cagri ; Cakmak, Ismail ; Tekes, Ahmet Turan</creatorcontrib><description>Herein, the poly(ɛ‐caprolactone)‐poly(ethylene glycol)‐poly(ɛ‐caprolactone) (PCL‐PEG‐PCL) macro xanthate reversible addition–fragmentation chain‐transfer agent is obtained on the polyethylene glycol (PEG) (600, 1000, and 1500 g mol
−1
) block, after the addition of ɛ‐caprolactone via ring‐opening polymerization. Then, poly (styrene‐b‐ɛ‐caprolactone‐b‐PEG‐b‐ɛ‐caprolactone‐b‐styrene) pentablock copolymer is synthesized reversible addition–fragmentation chain‐transfer (RAFT) solution polymerization technique via mediated PCL‐PEG‐PCL xanthate macro‐RAFT agents and 2,2′‐azobisisobutyronitrile as initiator. The products are demonstrated using Fourier transform infrared spectrophotometer (FT‐IR), proton nuclear magnetic resonance (
1
H‐NMR), carbon nuclear magnetic resonance (
13
C‐NMR), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC) analyses. First‐order linear kinetic graphs of the reaction mechanism are observed with an increase in molecular weights (
M
W
) between 16 000 and 36 000 g mol
−1
. The narrow dispersity (
Đ
= 1.40–1.48) polymer formation of styrene (St) controlled by RAFT polymerization confirms the increase in molecular weight according to the polymerization time. The reaction kinetics are first order and the rate constants are found to be
k
1
= 6.16 × 10
−4
s
−1
,
k
2
= 6.91 × 10
−4
s
−1
and
k
3
= 7.33 × 10
−4
s
−1
. Thermal and spectroscopic analyses prove that the reactions are carried out successfully.</description><identifier>ISSN: 1862-832X</identifier><identifier>EISSN: 1862-8338</identifier><identifier>DOI: 10.1002/mren.202300036</identifier><language>eng</language><publisher>Weinheim: Wiley Subscription Services, Inc</publisher><subject>Addition polymerization ; Azobisisobutyronitrile ; Chemical synthesis ; Copolymers ; Fourier transforms ; Fragmentation ; Gel chromatography ; Infrared spectrophotometers ; Molecular weight ; NMR ; Nuclear magnetic resonance ; Polyethylene glycol ; Polymerization ; Rate constants ; Reaction kinetics ; Reaction mechanisms ; Reagents ; Ring opening polymerization ; Solution polymerization ; Styrenes</subject><ispartof>Macromolecular reaction engineering, 2023-12, Vol.17 (6)</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c307t-aa6445814960490679ecd5b413d359a3e3de0b1dc8f4c65da56fbb5c2e1045ca3</citedby><cites>FETCH-LOGICAL-c307t-aa6445814960490679ecd5b413d359a3e3de0b1dc8f4c65da56fbb5c2e1045ca3</cites><orcidid>0000-0002-9942-7367 ; 0000-0001-5811-8253 ; 0000-0002-2296-2265 ; 0000-0002-3191-7570 ; 0000-0001-8627-9038</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27911,27912</link.rule.ids></links><search><creatorcontrib>Yildiko, Umit</creatorcontrib><creatorcontrib>Tanriverdi, Aslihan Aycan</creatorcontrib><creatorcontrib>Ata, Ahmet Cagri</creatorcontrib><creatorcontrib>Cakmak, Ismail</creatorcontrib><creatorcontrib>Tekes, Ahmet Turan</creatorcontrib><title>Synthesis and Analysis of Well‐Defined Copolymers via by Combination ROP Technique</title><title>Macromolecular reaction engineering</title><description>Herein, the poly(ɛ‐caprolactone)‐poly(ethylene glycol)‐poly(ɛ‐caprolactone) (PCL‐PEG‐PCL) macro xanthate reversible addition–fragmentation chain‐transfer agent is obtained on the polyethylene glycol (PEG) (600, 1000, and 1500 g mol
−1
) block, after the addition of ɛ‐caprolactone via ring‐opening polymerization. Then, poly (styrene‐b‐ɛ‐caprolactone‐b‐PEG‐b‐ɛ‐caprolactone‐b‐styrene) pentablock copolymer is synthesized reversible addition–fragmentation chain‐transfer (RAFT) solution polymerization technique via mediated PCL‐PEG‐PCL xanthate macro‐RAFT agents and 2,2′‐azobisisobutyronitrile as initiator. The products are demonstrated using Fourier transform infrared spectrophotometer (FT‐IR), proton nuclear magnetic resonance (
1
H‐NMR), carbon nuclear magnetic resonance (
13
C‐NMR), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC) analyses. First‐order linear kinetic graphs of the reaction mechanism are observed with an increase in molecular weights (
M
W
) between 16 000 and 36 000 g mol
−1
. The narrow dispersity (
Đ
= 1.40–1.48) polymer formation of styrene (St) controlled by RAFT polymerization confirms the increase in molecular weight according to the polymerization time. The reaction kinetics are first order and the rate constants are found to be
k
1
= 6.16 × 10
−4
s
−1
,
k
2
= 6.91 × 10
−4
s
−1
and
k
3
= 7.33 × 10
−4
s
−1
. Thermal and spectroscopic analyses prove that the reactions are carried out successfully.</description><subject>Addition polymerization</subject><subject>Azobisisobutyronitrile</subject><subject>Chemical synthesis</subject><subject>Copolymers</subject><subject>Fourier transforms</subject><subject>Fragmentation</subject><subject>Gel chromatography</subject><subject>Infrared spectrophotometers</subject><subject>Molecular weight</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Polyethylene glycol</subject><subject>Polymerization</subject><subject>Rate constants</subject><subject>Reaction kinetics</subject><subject>Reaction mechanisms</subject><subject>Reagents</subject><subject>Ring opening polymerization</subject><subject>Solution polymerization</subject><subject>Styrenes</subject><issn>1862-832X</issn><issn>1862-8338</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKtXzwHPWyef3T2W-gmFilb0FrJJlqbsZmuyCnvzJ_gb_SVuqXQu78zwMi_zIHRJYEIA6HUTXZhQoAwAmDxCI5JLmuWM5ceHnr6forOUNgBiqGKEVi996NYu-YR1sHgWdN3vhrbCb66uf79_blzlg7N43m7bum9cTPjLa1z2w6YpfdCdbwN-Xj7hlTPr4D8-3Tk6qXSd3MW_jtHr3e1q_pAtlveP89kiMwymXaa15FzkhBcSeAFyWjhjRckJs0wUmjlmHZTEmrziRgqrhazKUhjqCHBhNBujq_3dbWyH2NSpTfsZhxeSogUQIQcsxeCa7F0mtilFV6lt9I2OvSKgduTUjpw6kGN_dYdiew</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Yildiko, Umit</creator><creator>Tanriverdi, Aslihan Aycan</creator><creator>Ata, Ahmet Cagri</creator><creator>Cakmak, Ismail</creator><creator>Tekes, Ahmet Turan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-9942-7367</orcidid><orcidid>https://orcid.org/0000-0001-5811-8253</orcidid><orcidid>https://orcid.org/0000-0002-2296-2265</orcidid><orcidid>https://orcid.org/0000-0002-3191-7570</orcidid><orcidid>https://orcid.org/0000-0001-8627-9038</orcidid></search><sort><creationdate>202312</creationdate><title>Synthesis and Analysis of Well‐Defined Copolymers via by Combination ROP Technique</title><author>Yildiko, Umit ; Tanriverdi, Aslihan Aycan ; Ata, Ahmet Cagri ; Cakmak, Ismail ; Tekes, Ahmet Turan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c307t-aa6445814960490679ecd5b413d359a3e3de0b1dc8f4c65da56fbb5c2e1045ca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Addition polymerization</topic><topic>Azobisisobutyronitrile</topic><topic>Chemical synthesis</topic><topic>Copolymers</topic><topic>Fourier transforms</topic><topic>Fragmentation</topic><topic>Gel chromatography</topic><topic>Infrared spectrophotometers</topic><topic>Molecular weight</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Polyethylene glycol</topic><topic>Polymerization</topic><topic>Rate constants</topic><topic>Reaction kinetics</topic><topic>Reaction mechanisms</topic><topic>Reagents</topic><topic>Ring opening polymerization</topic><topic>Solution polymerization</topic><topic>Styrenes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yildiko, Umit</creatorcontrib><creatorcontrib>Tanriverdi, Aslihan Aycan</creatorcontrib><creatorcontrib>Ata, Ahmet Cagri</creatorcontrib><creatorcontrib>Cakmak, Ismail</creatorcontrib><creatorcontrib>Tekes, Ahmet Turan</creatorcontrib><collection>CrossRef</collection><jtitle>Macromolecular reaction engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yildiko, Umit</au><au>Tanriverdi, Aslihan Aycan</au><au>Ata, Ahmet Cagri</au><au>Cakmak, Ismail</au><au>Tekes, Ahmet Turan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Synthesis and Analysis of Well‐Defined Copolymers via by Combination ROP Technique</atitle><jtitle>Macromolecular reaction engineering</jtitle><date>2023-12</date><risdate>2023</risdate><volume>17</volume><issue>6</issue><issn>1862-832X</issn><eissn>1862-8338</eissn><abstract>Herein, the poly(ɛ‐caprolactone)‐poly(ethylene glycol)‐poly(ɛ‐caprolactone) (PCL‐PEG‐PCL) macro xanthate reversible addition–fragmentation chain‐transfer agent is obtained on the polyethylene glycol (PEG) (600, 1000, and 1500 g mol
−1
) block, after the addition of ɛ‐caprolactone via ring‐opening polymerization. Then, poly (styrene‐b‐ɛ‐caprolactone‐b‐PEG‐b‐ɛ‐caprolactone‐b‐styrene) pentablock copolymer is synthesized reversible addition–fragmentation chain‐transfer (RAFT) solution polymerization technique via mediated PCL‐PEG‐PCL xanthate macro‐RAFT agents and 2,2′‐azobisisobutyronitrile as initiator. The products are demonstrated using Fourier transform infrared spectrophotometer (FT‐IR), proton nuclear magnetic resonance (
1
H‐NMR), carbon nuclear magnetic resonance (
13
C‐NMR), differential scanning calorimetry (DSC), and gel permeation chromatography (GPC) analyses. First‐order linear kinetic graphs of the reaction mechanism are observed with an increase in molecular weights (
M
W
) between 16 000 and 36 000 g mol
−1
. The narrow dispersity (
Đ
= 1.40–1.48) polymer formation of styrene (St) controlled by RAFT polymerization confirms the increase in molecular weight according to the polymerization time. The reaction kinetics are first order and the rate constants are found to be
k
1
= 6.16 × 10
−4
s
−1
,
k
2
= 6.91 × 10
−4
s
−1
and
k
3
= 7.33 × 10
−4
s
−1
. Thermal and spectroscopic analyses prove that the reactions are carried out successfully.</abstract><cop>Weinheim</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/mren.202300036</doi><orcidid>https://orcid.org/0000-0002-9942-7367</orcidid><orcidid>https://orcid.org/0000-0001-5811-8253</orcidid><orcidid>https://orcid.org/0000-0002-2296-2265</orcidid><orcidid>https://orcid.org/0000-0002-3191-7570</orcidid><orcidid>https://orcid.org/0000-0001-8627-9038</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1862-832X |
ispartof | Macromolecular reaction engineering, 2023-12, Vol.17 (6) |
issn | 1862-832X 1862-8338 |
language | eng |
recordid | cdi_proquest_journals_2901560029 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Addition polymerization Azobisisobutyronitrile Chemical synthesis Copolymers Fourier transforms Fragmentation Gel chromatography Infrared spectrophotometers Molecular weight NMR Nuclear magnetic resonance Polyethylene glycol Polymerization Rate constants Reaction kinetics Reaction mechanisms Reagents Ring opening polymerization Solution polymerization Styrenes |
title | Synthesis and Analysis of Well‐Defined Copolymers via by Combination ROP Technique |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T16%3A29%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Synthesis%20and%20Analysis%20of%20Well%E2%80%90Defined%20Copolymers%20via%20by%20Combination%20ROP%20Technique&rft.jtitle=Macromolecular%20reaction%20engineering&rft.au=Yildiko,%20Umit&rft.date=2023-12&rft.volume=17&rft.issue=6&rft.issn=1862-832X&rft.eissn=1862-8338&rft_id=info:doi/10.1002/mren.202300036&rft_dat=%3Cproquest_cross%3E2901560029%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901560029&rft_id=info:pmid/&rfr_iscdi=true |