Leveraging Machine Learning for Disease Diagnoses Based on Wearable Devices: A Survey

Many countries around the world are facing a shortage of healthcare resources, especially during the post-epidemic era, leading to a dramatic increase in the need for self-detection and self-management of diseases. The popularity of smart wearable devices, such as smartwatches, and the development o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE internet of things journal 2023-12, Vol.10 (24), p.21959-21981
Hauptverfasser: Jiang, Zhihan, Van Zoest, Vera, Deng, Weipeng, Ngai, Edith C. H., Liu, Jiangchuan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 21981
container_issue 24
container_start_page 21959
container_title IEEE internet of things journal
container_volume 10
creator Jiang, Zhihan
Van Zoest, Vera
Deng, Weipeng
Ngai, Edith C. H.
Liu, Jiangchuan
description Many countries around the world are facing a shortage of healthcare resources, especially during the post-epidemic era, leading to a dramatic increase in the need for self-detection and self-management of diseases. The popularity of smart wearable devices, such as smartwatches, and the development of machine learning (ML) bring new opportunities for the early detection and management of various prevalent diseases, such as cardiovascular diseases, Parkinson's disease, and diabetes. In this survey, we comprehensively review the articles related to specific diseases or health issues based on small wearable devices and ML. More specifically, we first present an overview of the articles selected and classify them according to their targeted diseases. Then, we summarize their objectives, wearable device and sensor data, ML techniques, and wearing locations. Based on the literature review, we discuss the challenges and propose future directions from the perspectives of privacy concerns, security concerns, transmission latency and reliability, energy consumption, multimodality, multisensor, multidevices, evaluation metrics, explainability, generalization and personalization, social influence, and human factors, aiming to inspire researchers in this field.
doi_str_mv 10.1109/JIOT.2023.3313158
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2901499676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10243618</ieee_id><sourcerecordid>2901499676</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-f091982c2ba27dbd79308c4d67d8a3e0ce6b1fd4f34860ee237dc65a7a3b8ce53</originalsourceid><addsrcrecordid>eNqNkUtPwkAUhRujiQT5ASYumrgVnDvTTqfuUHxgalgIupxMp7elBFucoRj-vdOUGJau7us7J7k5nncJZARA4tvX6Ww-ooSyEWPAIBQnXo8yGg0DzunpUX_uDaxdEUKcLISY97xFgjs0qiirwn9TellW6CeoTNUu8tr4k9KisuiqKqraovXv3Zj5deV_Ok6la3fDXanR3vlj_70xO9xfeGe5WlscHGrfWzw9zh9ehsnsefowToY6YMF2mJMYYkE1TRWNsjSLYkaEDjIeZUIxJBp5CnkW5CwQnCBSFmWahypSLBUaQ9b3bjpf-4ObJpUbU34ps5e1KuWk_BjL2hSyaWQIQDn9H54vrQQQBBx-3eEbU383aLdyVTemcg9JGhMI4phH3FHQUdrU1hrM_2yByDYe2cYj23jkIR6nueo0JSIe8TRgHAT7BSReixI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901499676</pqid></control><display><type>article</type><title>Leveraging Machine Learning for Disease Diagnoses Based on Wearable Devices: A Survey</title><source>IEEE Electronic Library (IEL)</source><creator>Jiang, Zhihan ; Van Zoest, Vera ; Deng, Weipeng ; Ngai, Edith C. H. ; Liu, Jiangchuan</creator><creatorcontrib>Jiang, Zhihan ; Van Zoest, Vera ; Deng, Weipeng ; Ngai, Edith C. H. ; Liu, Jiangchuan</creatorcontrib><description>Many countries around the world are facing a shortage of healthcare resources, especially during the post-epidemic era, leading to a dramatic increase in the need for self-detection and self-management of diseases. The popularity of smart wearable devices, such as smartwatches, and the development of machine learning (ML) bring new opportunities for the early detection and management of various prevalent diseases, such as cardiovascular diseases, Parkinson's disease, and diabetes. In this survey, we comprehensively review the articles related to specific diseases or health issues based on small wearable devices and ML. More specifically, we first present an overview of the articles selected and classify them according to their targeted diseases. Then, we summarize their objectives, wearable device and sensor data, ML techniques, and wearing locations. Based on the literature review, we discuss the challenges and propose future directions from the perspectives of privacy concerns, security concerns, transmission latency and reliability, energy consumption, multimodality, multisensor, multidevices, evaluation metrics, explainability, generalization and personalization, social influence, and human factors, aiming to inspire researchers in this field.</description><identifier>ISSN: 2327-4662</identifier><identifier>EISSN: 2327-4662</identifier><identifier>DOI: 10.1109/JIOT.2023.3313158</identifier><identifier>CODEN: IITJAU</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Computer science ; Deep learning ; Disease diagnoses ; Diseases ; Energy consumption ; Försvarssystem ; Human factors ; Literature reviews ; Machine learning ; machine learning (ML) ; Medical diagnosis ; Medical services ; Parkinson's disease ; physical health ; Smart devices ; smart watches ; Smartwatches ; Surveys ; Systems science for defence and security ; Watches ; Wearable computers ; wearable devices ; Wearable sensors ; Wearable technology</subject><ispartof>IEEE internet of things journal, 2023-12, Vol.10 (24), p.21959-21981</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-f091982c2ba27dbd79308c4d67d8a3e0ce6b1fd4f34860ee237dc65a7a3b8ce53</citedby><cites>FETCH-LOGICAL-c434t-f091982c2ba27dbd79308c4d67d8a3e0ce6b1fd4f34860ee237dc65a7a3b8ce53</cites><orcidid>0000-0002-3017-0874 ; 0000-0002-3454-8731 ; 0000-0003-4857-7143 ; 0000-0001-6592-1984 ; 0000-0002-8861-4001</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10243618$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>230,314,780,784,796,885,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10243618$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:fhs:diva-11801$$DView record from Swedish Publication Index$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-511262$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Jiang, Zhihan</creatorcontrib><creatorcontrib>Van Zoest, Vera</creatorcontrib><creatorcontrib>Deng, Weipeng</creatorcontrib><creatorcontrib>Ngai, Edith C. H.</creatorcontrib><creatorcontrib>Liu, Jiangchuan</creatorcontrib><title>Leveraging Machine Learning for Disease Diagnoses Based on Wearable Devices: A Survey</title><title>IEEE internet of things journal</title><addtitle>JIoT</addtitle><description>Many countries around the world are facing a shortage of healthcare resources, especially during the post-epidemic era, leading to a dramatic increase in the need for self-detection and self-management of diseases. The popularity of smart wearable devices, such as smartwatches, and the development of machine learning (ML) bring new opportunities for the early detection and management of various prevalent diseases, such as cardiovascular diseases, Parkinson's disease, and diabetes. In this survey, we comprehensively review the articles related to specific diseases or health issues based on small wearable devices and ML. More specifically, we first present an overview of the articles selected and classify them according to their targeted diseases. Then, we summarize their objectives, wearable device and sensor data, ML techniques, and wearing locations. Based on the literature review, we discuss the challenges and propose future directions from the perspectives of privacy concerns, security concerns, transmission latency and reliability, energy consumption, multimodality, multisensor, multidevices, evaluation metrics, explainability, generalization and personalization, social influence, and human factors, aiming to inspire researchers in this field.</description><subject>Computer science</subject><subject>Deep learning</subject><subject>Disease diagnoses</subject><subject>Diseases</subject><subject>Energy consumption</subject><subject>Försvarssystem</subject><subject>Human factors</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>machine learning (ML)</subject><subject>Medical diagnosis</subject><subject>Medical services</subject><subject>Parkinson's disease</subject><subject>physical health</subject><subject>Smart devices</subject><subject>smart watches</subject><subject>Smartwatches</subject><subject>Surveys</subject><subject>Systems science for defence and security</subject><subject>Watches</subject><subject>Wearable computers</subject><subject>wearable devices</subject><subject>Wearable sensors</subject><subject>Wearable technology</subject><issn>2327-4662</issn><issn>2327-4662</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNqNkUtPwkAUhRujiQT5ASYumrgVnDvTTqfuUHxgalgIupxMp7elBFucoRj-vdOUGJau7us7J7k5nncJZARA4tvX6Ww-ooSyEWPAIBQnXo8yGg0DzunpUX_uDaxdEUKcLISY97xFgjs0qiirwn9TellW6CeoTNUu8tr4k9KisuiqKqraovXv3Zj5deV_Ok6la3fDXanR3vlj_70xO9xfeGe5WlscHGrfWzw9zh9ehsnsefowToY6YMF2mJMYYkE1TRWNsjSLYkaEDjIeZUIxJBp5CnkW5CwQnCBSFmWahypSLBUaQ9b3bjpf-4ObJpUbU34ps5e1KuWk_BjL2hSyaWQIQDn9H54vrQQQBBx-3eEbU383aLdyVTemcg9JGhMI4phH3FHQUdrU1hrM_2yByDYe2cYj23jkIR6nueo0JSIe8TRgHAT7BSReixI</recordid><startdate>20231215</startdate><enddate>20231215</enddate><creator>Jiang, Zhihan</creator><creator>Van Zoest, Vera</creator><creator>Deng, Weipeng</creator><creator>Ngai, Edith C. H.</creator><creator>Liu, Jiangchuan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8Y</scope><scope>DF2</scope><orcidid>https://orcid.org/0000-0002-3017-0874</orcidid><orcidid>https://orcid.org/0000-0002-3454-8731</orcidid><orcidid>https://orcid.org/0000-0003-4857-7143</orcidid><orcidid>https://orcid.org/0000-0001-6592-1984</orcidid><orcidid>https://orcid.org/0000-0002-8861-4001</orcidid></search><sort><creationdate>20231215</creationdate><title>Leveraging Machine Learning for Disease Diagnoses Based on Wearable Devices: A Survey</title><author>Jiang, Zhihan ; Van Zoest, Vera ; Deng, Weipeng ; Ngai, Edith C. H. ; Liu, Jiangchuan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-f091982c2ba27dbd79308c4d67d8a3e0ce6b1fd4f34860ee237dc65a7a3b8ce53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Computer science</topic><topic>Deep learning</topic><topic>Disease diagnoses</topic><topic>Diseases</topic><topic>Energy consumption</topic><topic>Försvarssystem</topic><topic>Human factors</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>machine learning (ML)</topic><topic>Medical diagnosis</topic><topic>Medical services</topic><topic>Parkinson's disease</topic><topic>physical health</topic><topic>Smart devices</topic><topic>smart watches</topic><topic>Smartwatches</topic><topic>Surveys</topic><topic>Systems science for defence and security</topic><topic>Watches</topic><topic>Wearable computers</topic><topic>wearable devices</topic><topic>Wearable sensors</topic><topic>Wearable technology</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiang, Zhihan</creatorcontrib><creatorcontrib>Van Zoest, Vera</creatorcontrib><creatorcontrib>Deng, Weipeng</creatorcontrib><creatorcontrib>Ngai, Edith C. H.</creatorcontrib><creatorcontrib>Liu, Jiangchuan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Försvarshögskolan</collection><collection>SWEPUB Uppsala universitet</collection><jtitle>IEEE internet of things journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiang, Zhihan</au><au>Van Zoest, Vera</au><au>Deng, Weipeng</au><au>Ngai, Edith C. H.</au><au>Liu, Jiangchuan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Leveraging Machine Learning for Disease Diagnoses Based on Wearable Devices: A Survey</atitle><jtitle>IEEE internet of things journal</jtitle><stitle>JIoT</stitle><date>2023-12-15</date><risdate>2023</risdate><volume>10</volume><issue>24</issue><spage>21959</spage><epage>21981</epage><pages>21959-21981</pages><issn>2327-4662</issn><eissn>2327-4662</eissn><coden>IITJAU</coden><abstract>Many countries around the world are facing a shortage of healthcare resources, especially during the post-epidemic era, leading to a dramatic increase in the need for self-detection and self-management of diseases. The popularity of smart wearable devices, such as smartwatches, and the development of machine learning (ML) bring new opportunities for the early detection and management of various prevalent diseases, such as cardiovascular diseases, Parkinson's disease, and diabetes. In this survey, we comprehensively review the articles related to specific diseases or health issues based on small wearable devices and ML. More specifically, we first present an overview of the articles selected and classify them according to their targeted diseases. Then, we summarize their objectives, wearable device and sensor data, ML techniques, and wearing locations. Based on the literature review, we discuss the challenges and propose future directions from the perspectives of privacy concerns, security concerns, transmission latency and reliability, energy consumption, multimodality, multisensor, multidevices, evaluation metrics, explainability, generalization and personalization, social influence, and human factors, aiming to inspire researchers in this field.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JIOT.2023.3313158</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0002-3017-0874</orcidid><orcidid>https://orcid.org/0000-0002-3454-8731</orcidid><orcidid>https://orcid.org/0000-0003-4857-7143</orcidid><orcidid>https://orcid.org/0000-0001-6592-1984</orcidid><orcidid>https://orcid.org/0000-0002-8861-4001</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-4662
ispartof IEEE internet of things journal, 2023-12, Vol.10 (24), p.21959-21981
issn 2327-4662
2327-4662
language eng
recordid cdi_proquest_journals_2901499676
source IEEE Electronic Library (IEL)
subjects Computer science
Deep learning
Disease diagnoses
Diseases
Energy consumption
Försvarssystem
Human factors
Literature reviews
Machine learning
machine learning (ML)
Medical diagnosis
Medical services
Parkinson's disease
physical health
Smart devices
smart watches
Smartwatches
Surveys
Systems science for defence and security
Watches
Wearable computers
wearable devices
Wearable sensors
Wearable technology
title Leveraging Machine Learning for Disease Diagnoses Based on Wearable Devices: A Survey
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A06%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Leveraging%20Machine%20Learning%20for%20Disease%20Diagnoses%20Based%20on%20Wearable%20Devices:%20A%20Survey&rft.jtitle=IEEE%20internet%20of%20things%20journal&rft.au=Jiang,%20Zhihan&rft.date=2023-12-15&rft.volume=10&rft.issue=24&rft.spage=21959&rft.epage=21981&rft.pages=21959-21981&rft.issn=2327-4662&rft.eissn=2327-4662&rft.coden=IITJAU&rft_id=info:doi/10.1109/JIOT.2023.3313158&rft_dat=%3Cproquest_RIE%3E2901499676%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901499676&rft_id=info:pmid/&rft_ieee_id=10243618&rfr_iscdi=true