Applying Graph Neural Networks to Support Decision Making on Collective Intelligent Transportation Systems
Recent advancements in autonomous vehicles and vehicular ad-hoc networks (VANETs) have presented diverse solutions for vehicle safety and automation. The demand to establish a connection between the two worlds has increased significantly to augment road safety and provide benefits to end users. Inte...
Gespeichert in:
Veröffentlicht in: | IEEE eTransactions on network and service management 2023-12, Vol.20 (4), p.1-1 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE eTransactions on network and service management |
container_volume | 20 |
creator | da Silva, Eduardo Sant'Ana Pedrini, Helio Santos, Aldri |
description | Recent advancements in autonomous vehicles and vehicular ad-hoc networks (VANETs) have presented diverse solutions for vehicle safety and automation. The demand to establish a connection between the two worlds has increased significantly to augment road safety and provide benefits to end users. Intelligent Transportation Systems (ITSs) vehicle station leaves a signed trace of its geographic location that is rated as personal data. An attacker can misuse existing V2V communication to track a vehicle's CAM-trace and to avoid misusing CAMs to harm privacy, selectives communication approaches for CAMs should be chosen instead of continuous communication of current CAMs. In this article we propose a VANET topology learning methodology prioritizing anonymization that can use any existing Graph Learning framework. Further, this work enhances the quality of graph models applied to the context of VANETs and autonomous vehicles. With the real coordinates, establishment of a grid of cells and the generation and training of the graph, we can compare different frameworks generally used in these issues and one can chose the one that fits better to each scenario. |
doi_str_mv | 10.1109/TNSM.2023.3257993 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2901430076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10073542</ieee_id><sourcerecordid>2901430076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-1f81f1c3677d3ba734b4385f667687f85414d2cd2a7c0cbc666d6a5c69cf9c2d3</originalsourceid><addsrcrecordid>eNpNkM9PwjAYhhujiYj-ASYemnge9tfa9UhQkQTwAJ6b0nU4GOtsOw3_vVvgwOl9D8_zfckLwCNGI4yRfFkvV4sRQYSOKEmFlPQKDLCkJGEpFdcX_RbchbBDKM2wJAOwGzdNdSzrLZx63XzDpW29rrqIf87vA4wOrtqmcT7CV2vKULoaLvS-F7o2cVVlTSx_LZzV0VZVubV1hGuv69A7Ovb86hiiPYR7cFPoKtiHcw7B1_vbevKRzD-ns8l4nhgiWUxwkeECG8qFyOlGC8o2jGZpwbngmSiylGGWE5MTLQwyG8M5z7lODZemkIbkdAieT3cb735aG6LaudbX3UtFJMKMIiR4R-ETZbwLwdtCNb48aH9UGKl-UtVPqvpJ1XnSznk6OaW19oJHgqaM0H-r13Q9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901430076</pqid></control><display><type>article</type><title>Applying Graph Neural Networks to Support Decision Making on Collective Intelligent Transportation Systems</title><source>IEEE Electronic Library (IEL)</source><creator>da Silva, Eduardo Sant'Ana ; Pedrini, Helio ; Santos, Aldri</creator><creatorcontrib>da Silva, Eduardo Sant'Ana ; Pedrini, Helio ; Santos, Aldri</creatorcontrib><description>Recent advancements in autonomous vehicles and vehicular ad-hoc networks (VANETs) have presented diverse solutions for vehicle safety and automation. The demand to establish a connection between the two worlds has increased significantly to augment road safety and provide benefits to end users. Intelligent Transportation Systems (ITSs) vehicle station leaves a signed trace of its geographic location that is rated as personal data. An attacker can misuse existing V2V communication to track a vehicle's CAM-trace and to avoid misusing CAMs to harm privacy, selectives communication approaches for CAMs should be chosen instead of continuous communication of current CAMs. In this article we propose a VANET topology learning methodology prioritizing anonymization that can use any existing Graph Learning framework. Further, this work enhances the quality of graph models applied to the context of VANETs and autonomous vehicles. With the real coordinates, establishment of a grid of cells and the generation and training of the graph, we can compare different frameworks generally used in these issues and one can chose the one that fits better to each scenario.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2023.3257993</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automation ; Autonomous Cars ; Autonomous vehicles ; Cams ; CITS ; Communication ; End users ; Geographical locations ; GNNs ; Graph neural networks ; Graphs ; Intelligent transportation systems ; Kernel ; Learning ; Mobile ad hoc networks ; Road safety ; Topology ; Traffic safety ; Transportation networks ; VANETs ; Vehicle safety ; Vehicular ad hoc networks</subject><ispartof>IEEE eTransactions on network and service management, 2023-12, Vol.20 (4), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-1f81f1c3677d3ba734b4385f667687f85414d2cd2a7c0cbc666d6a5c69cf9c2d3</citedby><cites>FETCH-LOGICAL-c294t-1f81f1c3677d3ba734b4385f667687f85414d2cd2a7c0cbc666d6a5c69cf9c2d3</cites><orcidid>0000-0002-5861-4414 ; 0000-0003-0125-630X ; 0000-0002-4282-3094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10073542$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10073542$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>da Silva, Eduardo Sant'Ana</creatorcontrib><creatorcontrib>Pedrini, Helio</creatorcontrib><creatorcontrib>Santos, Aldri</creatorcontrib><title>Applying Graph Neural Networks to Support Decision Making on Collective Intelligent Transportation Systems</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>Recent advancements in autonomous vehicles and vehicular ad-hoc networks (VANETs) have presented diverse solutions for vehicle safety and automation. The demand to establish a connection between the two worlds has increased significantly to augment road safety and provide benefits to end users. Intelligent Transportation Systems (ITSs) vehicle station leaves a signed trace of its geographic location that is rated as personal data. An attacker can misuse existing V2V communication to track a vehicle's CAM-trace and to avoid misusing CAMs to harm privacy, selectives communication approaches for CAMs should be chosen instead of continuous communication of current CAMs. In this article we propose a VANET topology learning methodology prioritizing anonymization that can use any existing Graph Learning framework. Further, this work enhances the quality of graph models applied to the context of VANETs and autonomous vehicles. With the real coordinates, establishment of a grid of cells and the generation and training of the graph, we can compare different frameworks generally used in these issues and one can chose the one that fits better to each scenario.</description><subject>Automation</subject><subject>Autonomous Cars</subject><subject>Autonomous vehicles</subject><subject>Cams</subject><subject>CITS</subject><subject>Communication</subject><subject>End users</subject><subject>Geographical locations</subject><subject>GNNs</subject><subject>Graph neural networks</subject><subject>Graphs</subject><subject>Intelligent transportation systems</subject><subject>Kernel</subject><subject>Learning</subject><subject>Mobile ad hoc networks</subject><subject>Road safety</subject><subject>Topology</subject><subject>Traffic safety</subject><subject>Transportation networks</subject><subject>VANETs</subject><subject>Vehicle safety</subject><subject>Vehicular ad hoc networks</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9PwjAYhhujiYj-ASYemnge9tfa9UhQkQTwAJ6b0nU4GOtsOw3_vVvgwOl9D8_zfckLwCNGI4yRfFkvV4sRQYSOKEmFlPQKDLCkJGEpFdcX_RbchbBDKM2wJAOwGzdNdSzrLZx63XzDpW29rrqIf87vA4wOrtqmcT7CV2vKULoaLvS-F7o2cVVlTSx_LZzV0VZVubV1hGuv69A7Ovb86hiiPYR7cFPoKtiHcw7B1_vbevKRzD-ns8l4nhgiWUxwkeECG8qFyOlGC8o2jGZpwbngmSiylGGWE5MTLQwyG8M5z7lODZemkIbkdAieT3cb735aG6LaudbX3UtFJMKMIiR4R-ETZbwLwdtCNb48aH9UGKl-UtVPqvpJ1XnSznk6OaW19oJHgqaM0H-r13Q9</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>da Silva, Eduardo Sant'Ana</creator><creator>Pedrini, Helio</creator><creator>Santos, Aldri</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5861-4414</orcidid><orcidid>https://orcid.org/0000-0003-0125-630X</orcidid><orcidid>https://orcid.org/0000-0002-4282-3094</orcidid></search><sort><creationdate>20231201</creationdate><title>Applying Graph Neural Networks to Support Decision Making on Collective Intelligent Transportation Systems</title><author>da Silva, Eduardo Sant'Ana ; Pedrini, Helio ; Santos, Aldri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-1f81f1c3677d3ba734b4385f667687f85414d2cd2a7c0cbc666d6a5c69cf9c2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automation</topic><topic>Autonomous Cars</topic><topic>Autonomous vehicles</topic><topic>Cams</topic><topic>CITS</topic><topic>Communication</topic><topic>End users</topic><topic>Geographical locations</topic><topic>GNNs</topic><topic>Graph neural networks</topic><topic>Graphs</topic><topic>Intelligent transportation systems</topic><topic>Kernel</topic><topic>Learning</topic><topic>Mobile ad hoc networks</topic><topic>Road safety</topic><topic>Topology</topic><topic>Traffic safety</topic><topic>Transportation networks</topic><topic>VANETs</topic><topic>Vehicle safety</topic><topic>Vehicular ad hoc networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva, Eduardo Sant'Ana</creatorcontrib><creatorcontrib>Pedrini, Helio</creatorcontrib><creatorcontrib>Santos, Aldri</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>da Silva, Eduardo Sant'Ana</au><au>Pedrini, Helio</au><au>Santos, Aldri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying Graph Neural Networks to Support Decision Making on Collective Intelligent Transportation Systems</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>20</volume><issue>4</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>Recent advancements in autonomous vehicles and vehicular ad-hoc networks (VANETs) have presented diverse solutions for vehicle safety and automation. The demand to establish a connection between the two worlds has increased significantly to augment road safety and provide benefits to end users. Intelligent Transportation Systems (ITSs) vehicle station leaves a signed trace of its geographic location that is rated as personal data. An attacker can misuse existing V2V communication to track a vehicle's CAM-trace and to avoid misusing CAMs to harm privacy, selectives communication approaches for CAMs should be chosen instead of continuous communication of current CAMs. In this article we propose a VANET topology learning methodology prioritizing anonymization that can use any existing Graph Learning framework. Further, this work enhances the quality of graph models applied to the context of VANETs and autonomous vehicles. With the real coordinates, establishment of a grid of cells and the generation and training of the graph, we can compare different frameworks generally used in these issues and one can chose the one that fits better to each scenario.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2023.3257993</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5861-4414</orcidid><orcidid>https://orcid.org/0000-0003-0125-630X</orcidid><orcidid>https://orcid.org/0000-0002-4282-3094</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-4537 |
ispartof | IEEE eTransactions on network and service management, 2023-12, Vol.20 (4), p.1-1 |
issn | 1932-4537 1932-4537 |
language | eng |
recordid | cdi_proquest_journals_2901430076 |
source | IEEE Electronic Library (IEL) |
subjects | Automation Autonomous Cars Autonomous vehicles Cams CITS Communication End users Geographical locations GNNs Graph neural networks Graphs Intelligent transportation systems Kernel Learning Mobile ad hoc networks Road safety Topology Traffic safety Transportation networks VANETs Vehicle safety Vehicular ad hoc networks |
title | Applying Graph Neural Networks to Support Decision Making on Collective Intelligent Transportation Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20Graph%20Neural%20Networks%20to%20Support%20Decision%20Making%20on%20Collective%20Intelligent%20Transportation%20Systems&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=da%20Silva,%20Eduardo%20Sant'Ana&rft.date=2023-12-01&rft.volume=20&rft.issue=4&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2023.3257993&rft_dat=%3Cproquest_RIE%3E2901430076%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901430076&rft_id=info:pmid/&rft_ieee_id=10073542&rfr_iscdi=true |