Applying Graph Neural Networks to Support Decision Making on Collective Intelligent Transportation Systems

Recent advancements in autonomous vehicles and vehicular ad-hoc networks (VANETs) have presented diverse solutions for vehicle safety and automation. The demand to establish a connection between the two worlds has increased significantly to augment road safety and provide benefits to end users. Inte...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE eTransactions on network and service management 2023-12, Vol.20 (4), p.1-1
Hauptverfasser: da Silva, Eduardo Sant'Ana, Pedrini, Helio, Santos, Aldri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 4
container_start_page 1
container_title IEEE eTransactions on network and service management
container_volume 20
creator da Silva, Eduardo Sant'Ana
Pedrini, Helio
Santos, Aldri
description Recent advancements in autonomous vehicles and vehicular ad-hoc networks (VANETs) have presented diverse solutions for vehicle safety and automation. The demand to establish a connection between the two worlds has increased significantly to augment road safety and provide benefits to end users. Intelligent Transportation Systems (ITSs) vehicle station leaves a signed trace of its geographic location that is rated as personal data. An attacker can misuse existing V2V communication to track a vehicle's CAM-trace and to avoid misusing CAMs to harm privacy, selectives communication approaches for CAMs should be chosen instead of continuous communication of current CAMs. In this article we propose a VANET topology learning methodology prioritizing anonymization that can use any existing Graph Learning framework. Further, this work enhances the quality of graph models applied to the context of VANETs and autonomous vehicles. With the real coordinates, establishment of a grid of cells and the generation and training of the graph, we can compare different frameworks generally used in these issues and one can chose the one that fits better to each scenario.
doi_str_mv 10.1109/TNSM.2023.3257993
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2901430076</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10073542</ieee_id><sourcerecordid>2901430076</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-1f81f1c3677d3ba734b4385f667687f85414d2cd2a7c0cbc666d6a5c69cf9c2d3</originalsourceid><addsrcrecordid>eNpNkM9PwjAYhhujiYj-ASYemnge9tfa9UhQkQTwAJ6b0nU4GOtsOw3_vVvgwOl9D8_zfckLwCNGI4yRfFkvV4sRQYSOKEmFlPQKDLCkJGEpFdcX_RbchbBDKM2wJAOwGzdNdSzrLZx63XzDpW29rrqIf87vA4wOrtqmcT7CV2vKULoaLvS-F7o2cVVlTSx_LZzV0VZVubV1hGuv69A7Ovb86hiiPYR7cFPoKtiHcw7B1_vbevKRzD-ns8l4nhgiWUxwkeECG8qFyOlGC8o2jGZpwbngmSiylGGWE5MTLQwyG8M5z7lODZemkIbkdAieT3cb735aG6LaudbX3UtFJMKMIiR4R-ETZbwLwdtCNb48aH9UGKl-UtVPqvpJ1XnSznk6OaW19oJHgqaM0H-r13Q9</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901430076</pqid></control><display><type>article</type><title>Applying Graph Neural Networks to Support Decision Making on Collective Intelligent Transportation Systems</title><source>IEEE Electronic Library (IEL)</source><creator>da Silva, Eduardo Sant'Ana ; Pedrini, Helio ; Santos, Aldri</creator><creatorcontrib>da Silva, Eduardo Sant'Ana ; Pedrini, Helio ; Santos, Aldri</creatorcontrib><description>Recent advancements in autonomous vehicles and vehicular ad-hoc networks (VANETs) have presented diverse solutions for vehicle safety and automation. The demand to establish a connection between the two worlds has increased significantly to augment road safety and provide benefits to end users. Intelligent Transportation Systems (ITSs) vehicle station leaves a signed trace of its geographic location that is rated as personal data. An attacker can misuse existing V2V communication to track a vehicle's CAM-trace and to avoid misusing CAMs to harm privacy, selectives communication approaches for CAMs should be chosen instead of continuous communication of current CAMs. In this article we propose a VANET topology learning methodology prioritizing anonymization that can use any existing Graph Learning framework. Further, this work enhances the quality of graph models applied to the context of VANETs and autonomous vehicles. With the real coordinates, establishment of a grid of cells and the generation and training of the graph, we can compare different frameworks generally used in these issues and one can chose the one that fits better to each scenario.</description><identifier>ISSN: 1932-4537</identifier><identifier>EISSN: 1932-4537</identifier><identifier>DOI: 10.1109/TNSM.2023.3257993</identifier><identifier>CODEN: ITNSC4</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Automation ; Autonomous Cars ; Autonomous vehicles ; Cams ; CITS ; Communication ; End users ; Geographical locations ; GNNs ; Graph neural networks ; Graphs ; Intelligent transportation systems ; Kernel ; Learning ; Mobile ad hoc networks ; Road safety ; Topology ; Traffic safety ; Transportation networks ; VANETs ; Vehicle safety ; Vehicular ad hoc networks</subject><ispartof>IEEE eTransactions on network and service management, 2023-12, Vol.20 (4), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-1f81f1c3677d3ba734b4385f667687f85414d2cd2a7c0cbc666d6a5c69cf9c2d3</citedby><cites>FETCH-LOGICAL-c294t-1f81f1c3677d3ba734b4385f667687f85414d2cd2a7c0cbc666d6a5c69cf9c2d3</cites><orcidid>0000-0002-5861-4414 ; 0000-0003-0125-630X ; 0000-0002-4282-3094</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10073542$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10073542$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>da Silva, Eduardo Sant'Ana</creatorcontrib><creatorcontrib>Pedrini, Helio</creatorcontrib><creatorcontrib>Santos, Aldri</creatorcontrib><title>Applying Graph Neural Networks to Support Decision Making on Collective Intelligent Transportation Systems</title><title>IEEE eTransactions on network and service management</title><addtitle>T-NSM</addtitle><description>Recent advancements in autonomous vehicles and vehicular ad-hoc networks (VANETs) have presented diverse solutions for vehicle safety and automation. The demand to establish a connection between the two worlds has increased significantly to augment road safety and provide benefits to end users. Intelligent Transportation Systems (ITSs) vehicle station leaves a signed trace of its geographic location that is rated as personal data. An attacker can misuse existing V2V communication to track a vehicle's CAM-trace and to avoid misusing CAMs to harm privacy, selectives communication approaches for CAMs should be chosen instead of continuous communication of current CAMs. In this article we propose a VANET topology learning methodology prioritizing anonymization that can use any existing Graph Learning framework. Further, this work enhances the quality of graph models applied to the context of VANETs and autonomous vehicles. With the real coordinates, establishment of a grid of cells and the generation and training of the graph, we can compare different frameworks generally used in these issues and one can chose the one that fits better to each scenario.</description><subject>Automation</subject><subject>Autonomous Cars</subject><subject>Autonomous vehicles</subject><subject>Cams</subject><subject>CITS</subject><subject>Communication</subject><subject>End users</subject><subject>Geographical locations</subject><subject>GNNs</subject><subject>Graph neural networks</subject><subject>Graphs</subject><subject>Intelligent transportation systems</subject><subject>Kernel</subject><subject>Learning</subject><subject>Mobile ad hoc networks</subject><subject>Road safety</subject><subject>Topology</subject><subject>Traffic safety</subject><subject>Transportation networks</subject><subject>VANETs</subject><subject>Vehicle safety</subject><subject>Vehicular ad hoc networks</subject><issn>1932-4537</issn><issn>1932-4537</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM9PwjAYhhujiYj-ASYemnge9tfa9UhQkQTwAJ6b0nU4GOtsOw3_vVvgwOl9D8_zfckLwCNGI4yRfFkvV4sRQYSOKEmFlPQKDLCkJGEpFdcX_RbchbBDKM2wJAOwGzdNdSzrLZx63XzDpW29rrqIf87vA4wOrtqmcT7CV2vKULoaLvS-F7o2cVVlTSx_LZzV0VZVubV1hGuv69A7Ovb86hiiPYR7cFPoKtiHcw7B1_vbevKRzD-ns8l4nhgiWUxwkeECG8qFyOlGC8o2jGZpwbngmSiylGGWE5MTLQwyG8M5z7lODZemkIbkdAieT3cb735aG6LaudbX3UtFJMKMIiR4R-ETZbwLwdtCNb48aH9UGKl-UtVPqvpJ1XnSznk6OaW19oJHgqaM0H-r13Q9</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>da Silva, Eduardo Sant'Ana</creator><creator>Pedrini, Helio</creator><creator>Santos, Aldri</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-5861-4414</orcidid><orcidid>https://orcid.org/0000-0003-0125-630X</orcidid><orcidid>https://orcid.org/0000-0002-4282-3094</orcidid></search><sort><creationdate>20231201</creationdate><title>Applying Graph Neural Networks to Support Decision Making on Collective Intelligent Transportation Systems</title><author>da Silva, Eduardo Sant'Ana ; Pedrini, Helio ; Santos, Aldri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-1f81f1c3677d3ba734b4385f667687f85414d2cd2a7c0cbc666d6a5c69cf9c2d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Automation</topic><topic>Autonomous Cars</topic><topic>Autonomous vehicles</topic><topic>Cams</topic><topic>CITS</topic><topic>Communication</topic><topic>End users</topic><topic>Geographical locations</topic><topic>GNNs</topic><topic>Graph neural networks</topic><topic>Graphs</topic><topic>Intelligent transportation systems</topic><topic>Kernel</topic><topic>Learning</topic><topic>Mobile ad hoc networks</topic><topic>Road safety</topic><topic>Topology</topic><topic>Traffic safety</topic><topic>Transportation networks</topic><topic>VANETs</topic><topic>Vehicle safety</topic><topic>Vehicular ad hoc networks</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>da Silva, Eduardo Sant'Ana</creatorcontrib><creatorcontrib>Pedrini, Helio</creatorcontrib><creatorcontrib>Santos, Aldri</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE eTransactions on network and service management</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>da Silva, Eduardo Sant'Ana</au><au>Pedrini, Helio</au><au>Santos, Aldri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Applying Graph Neural Networks to Support Decision Making on Collective Intelligent Transportation Systems</atitle><jtitle>IEEE eTransactions on network and service management</jtitle><stitle>T-NSM</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>20</volume><issue>4</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>1932-4537</issn><eissn>1932-4537</eissn><coden>ITNSC4</coden><abstract>Recent advancements in autonomous vehicles and vehicular ad-hoc networks (VANETs) have presented diverse solutions for vehicle safety and automation. The demand to establish a connection between the two worlds has increased significantly to augment road safety and provide benefits to end users. Intelligent Transportation Systems (ITSs) vehicle station leaves a signed trace of its geographic location that is rated as personal data. An attacker can misuse existing V2V communication to track a vehicle's CAM-trace and to avoid misusing CAMs to harm privacy, selectives communication approaches for CAMs should be chosen instead of continuous communication of current CAMs. In this article we propose a VANET topology learning methodology prioritizing anonymization that can use any existing Graph Learning framework. Further, this work enhances the quality of graph models applied to the context of VANETs and autonomous vehicles. With the real coordinates, establishment of a grid of cells and the generation and training of the graph, we can compare different frameworks generally used in these issues and one can chose the one that fits better to each scenario.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNSM.2023.3257993</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-5861-4414</orcidid><orcidid>https://orcid.org/0000-0003-0125-630X</orcidid><orcidid>https://orcid.org/0000-0002-4282-3094</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-4537
ispartof IEEE eTransactions on network and service management, 2023-12, Vol.20 (4), p.1-1
issn 1932-4537
1932-4537
language eng
recordid cdi_proquest_journals_2901430076
source IEEE Electronic Library (IEL)
subjects Automation
Autonomous Cars
Autonomous vehicles
Cams
CITS
Communication
End users
Geographical locations
GNNs
Graph neural networks
Graphs
Intelligent transportation systems
Kernel
Learning
Mobile ad hoc networks
Road safety
Topology
Traffic safety
Transportation networks
VANETs
Vehicle safety
Vehicular ad hoc networks
title Applying Graph Neural Networks to Support Decision Making on Collective Intelligent Transportation Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Applying%20Graph%20Neural%20Networks%20to%20Support%20Decision%20Making%20on%20Collective%20Intelligent%20Transportation%20Systems&rft.jtitle=IEEE%20eTransactions%20on%20network%20and%20service%20management&rft.au=da%20Silva,%20Eduardo%20Sant'Ana&rft.date=2023-12-01&rft.volume=20&rft.issue=4&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=1932-4537&rft.eissn=1932-4537&rft.coden=ITNSC4&rft_id=info:doi/10.1109/TNSM.2023.3257993&rft_dat=%3Cproquest_RIE%3E2901430076%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901430076&rft_id=info:pmid/&rft_ieee_id=10073542&rfr_iscdi=true