Robust Strategic Behavior of a Large Multi-Energy Consumer in Electricity Market Considering Integrated Demand Response
Integrated demand response (IDR) is a cost-effective approach to promoting renewable energy consumption and energy saving in multi-energy systems. The efficient use of the flexibility of demand-side energy sources as well as the elasticity of energy demands increases the tendency for the development...
Gespeichert in:
Veröffentlicht in: | IEEE systems journal 2023-12, Vol.17 (4), p.1-11 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 11 |
---|---|
container_issue | 4 |
container_start_page | 1 |
container_title | IEEE systems journal |
container_volume | 17 |
creator | Mirzaei, Mohammad Amin Mehrjerdi, Hasan Saatloo, Amin Mansour |
description | Integrated demand response (IDR) is a cost-effective approach to promoting renewable energy consumption and energy saving in multi-energy systems. The efficient use of the flexibility of demand-side energy sources as well as the elasticity of energy demands increases the tendency for the development of IDR. This article proposes a bilevel optimization framework that allows a large multi-energy consumer (LMEC) equipped with self-provided energy resources to manipulate electricity market prices using optimum execution of the IDR to fulfill electricity, heating, and cooling needs, simultaneously. At the upper level, the LMEC operator seeks to minimize energy procurement costs associated with electricity, heating, and cooling, whereas at the lower level, the aim is to maximize social welfare from the market operator's perspective in order to establish the market-clearing price. The Karush-Kuhn-Tucker (KKT) conditions and strong duality theory are utilized to convert the model into a single-level mixed-integer linear programming framework. In addition, a developed information gap decision theory technique is adopted to cope with the uncertainty of power generation from wind turbines owned by the LMEC operator under a risk-averse scheme. The numerical findings demonstrate the potential of IDR in influencing power market prices to the benefit of LMEC and lowering its energy procurement costs. |
doi_str_mv | 10.1109/JSYST.2023.3299706 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2901428159</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10233128</ieee_id><sourcerecordid>2901428159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c247t-73680a79415f7c5a21d2617cfe58e1ce644d5e8264fb2eb1c6d29357a601a4dd3</originalsourceid><addsrcrecordid>eNpNkE1PAjEQhjdGExH9A8ZDE8-L_dxuj4qoGIgJ4MHTprSzWIRdbLsa_r3Lx8HTTDLP-07yJMk1wT1CsLp7nX5MZz2KKesxqpTE2UnSIYrJVFHGT_c7TXOS8_PkIoQlxiIXUnWS30k9b0JE0-h1hIUz6AE-9Y-rPapLpNFI-wWgcbOKLh1U4Bdb1K-r0KzBI1ehwQpM9M64uEVj7b8g7s_OgnfVAg2rtnNXbNEjrHVl0QTCpgXgMjkr9SrA1XF2k_enwaz_ko7enof9-1FqKJcxlSzLsZaKE1FKIzQllmZEmhJEDsRAxrkVkNOMl3MKc2IySxUTUmeYaG4t6ya3h96Nr78bCLFY1o2v2pcFVZhwmhOhWooeKOPrEDyUxca7tfbbguBiJ7jYCy52gouj4DZ0cwg5APgXoIwRmrM_rTZ4ng</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901428159</pqid></control><display><type>article</type><title>Robust Strategic Behavior of a Large Multi-Energy Consumer in Electricity Market Considering Integrated Demand Response</title><source>IEEE Electronic Library (IEL)</source><creator>Mirzaei, Mohammad Amin ; Mehrjerdi, Hasan ; Saatloo, Amin Mansour</creator><creatorcontrib>Mirzaei, Mohammad Amin ; Mehrjerdi, Hasan ; Saatloo, Amin Mansour</creatorcontrib><description>Integrated demand response (IDR) is a cost-effective approach to promoting renewable energy consumption and energy saving in multi-energy systems. The efficient use of the flexibility of demand-side energy sources as well as the elasticity of energy demands increases the tendency for the development of IDR. This article proposes a bilevel optimization framework that allows a large multi-energy consumer (LMEC) equipped with self-provided energy resources to manipulate electricity market prices using optimum execution of the IDR to fulfill electricity, heating, and cooling needs, simultaneously. At the upper level, the LMEC operator seeks to minimize energy procurement costs associated with electricity, heating, and cooling, whereas at the lower level, the aim is to maximize social welfare from the market operator's perspective in order to establish the market-clearing price. The Karush-Kuhn-Tucker (KKT) conditions and strong duality theory are utilized to convert the model into a single-level mixed-integer linear programming framework. In addition, a developed information gap decision theory technique is adopted to cope with the uncertainty of power generation from wind turbines owned by the LMEC operator under a risk-averse scheme. The numerical findings demonstrate the potential of IDR in influencing power market prices to the benefit of LMEC and lowering its energy procurement costs.</description><identifier>ISSN: 1932-8184</identifier><identifier>EISSN: 1937-9234</identifier><identifier>DOI: 10.1109/JSYST.2023.3299706</identifier><identifier>CODEN: ISJEB2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Behavioral sciences ; Bilevel optimization ; Cooling ; Costs ; Decision theory ; Demand side management ; Electric power demand ; Electricity ; Electricity pricing ; Electricity supply industry ; Energy consumption ; Energy costs ; Energy management ; Energy sources ; Heating ; information gap decision theory (IGDT) ; Integer programming ; integrated demand response (IDR) ; Kuhn-Tucker method ; large consumer ; Linear programming ; Market prices ; mathematical program with equilibrium constraints (MPEC) ; Mixed integer ; multi-energy systems ; Optimization ; Procurement ; Robustness (mathematics) ; Uncertainty ; Wind power generation ; Wind turbines</subject><ispartof>IEEE systems journal, 2023-12, Vol.17 (4), p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c247t-73680a79415f7c5a21d2617cfe58e1ce644d5e8264fb2eb1c6d29357a601a4dd3</cites><orcidid>0000-0002-8793-7642 ; 0000-0001-9775-8456 ; 0000-0002-7230-7648</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10233128$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10233128$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mirzaei, Mohammad Amin</creatorcontrib><creatorcontrib>Mehrjerdi, Hasan</creatorcontrib><creatorcontrib>Saatloo, Amin Mansour</creatorcontrib><title>Robust Strategic Behavior of a Large Multi-Energy Consumer in Electricity Market Considering Integrated Demand Response</title><title>IEEE systems journal</title><addtitle>JSYST</addtitle><description>Integrated demand response (IDR) is a cost-effective approach to promoting renewable energy consumption and energy saving in multi-energy systems. The efficient use of the flexibility of demand-side energy sources as well as the elasticity of energy demands increases the tendency for the development of IDR. This article proposes a bilevel optimization framework that allows a large multi-energy consumer (LMEC) equipped with self-provided energy resources to manipulate electricity market prices using optimum execution of the IDR to fulfill electricity, heating, and cooling needs, simultaneously. At the upper level, the LMEC operator seeks to minimize energy procurement costs associated with electricity, heating, and cooling, whereas at the lower level, the aim is to maximize social welfare from the market operator's perspective in order to establish the market-clearing price. The Karush-Kuhn-Tucker (KKT) conditions and strong duality theory are utilized to convert the model into a single-level mixed-integer linear programming framework. In addition, a developed information gap decision theory technique is adopted to cope with the uncertainty of power generation from wind turbines owned by the LMEC operator under a risk-averse scheme. The numerical findings demonstrate the potential of IDR in influencing power market prices to the benefit of LMEC and lowering its energy procurement costs.</description><subject>Behavioral sciences</subject><subject>Bilevel optimization</subject><subject>Cooling</subject><subject>Costs</subject><subject>Decision theory</subject><subject>Demand side management</subject><subject>Electric power demand</subject><subject>Electricity</subject><subject>Electricity pricing</subject><subject>Electricity supply industry</subject><subject>Energy consumption</subject><subject>Energy costs</subject><subject>Energy management</subject><subject>Energy sources</subject><subject>Heating</subject><subject>information gap decision theory (IGDT)</subject><subject>Integer programming</subject><subject>integrated demand response (IDR)</subject><subject>Kuhn-Tucker method</subject><subject>large consumer</subject><subject>Linear programming</subject><subject>Market prices</subject><subject>mathematical program with equilibrium constraints (MPEC)</subject><subject>Mixed integer</subject><subject>multi-energy systems</subject><subject>Optimization</subject><subject>Procurement</subject><subject>Robustness (mathematics)</subject><subject>Uncertainty</subject><subject>Wind power generation</subject><subject>Wind turbines</subject><issn>1932-8184</issn><issn>1937-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PAjEQhjdGExH9A8ZDE8-L_dxuj4qoGIgJ4MHTprSzWIRdbLsa_r3Lx8HTTDLP-07yJMk1wT1CsLp7nX5MZz2KKesxqpTE2UnSIYrJVFHGT_c7TXOS8_PkIoQlxiIXUnWS30k9b0JE0-h1hIUz6AE-9Y-rPapLpNFI-wWgcbOKLh1U4Bdb1K-r0KzBI1ehwQpM9M64uEVj7b8g7s_OgnfVAg2rtnNXbNEjrHVl0QTCpgXgMjkr9SrA1XF2k_enwaz_ko7enof9-1FqKJcxlSzLsZaKE1FKIzQllmZEmhJEDsRAxrkVkNOMl3MKc2IySxUTUmeYaG4t6ya3h96Nr78bCLFY1o2v2pcFVZhwmhOhWooeKOPrEDyUxca7tfbbguBiJ7jYCy52gouj4DZ0cwg5APgXoIwRmrM_rTZ4ng</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Mirzaei, Mohammad Amin</creator><creator>Mehrjerdi, Hasan</creator><creator>Saatloo, Amin Mansour</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-8793-7642</orcidid><orcidid>https://orcid.org/0000-0001-9775-8456</orcidid><orcidid>https://orcid.org/0000-0002-7230-7648</orcidid></search><sort><creationdate>20231201</creationdate><title>Robust Strategic Behavior of a Large Multi-Energy Consumer in Electricity Market Considering Integrated Demand Response</title><author>Mirzaei, Mohammad Amin ; Mehrjerdi, Hasan ; Saatloo, Amin Mansour</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c247t-73680a79415f7c5a21d2617cfe58e1ce644d5e8264fb2eb1c6d29357a601a4dd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Behavioral sciences</topic><topic>Bilevel optimization</topic><topic>Cooling</topic><topic>Costs</topic><topic>Decision theory</topic><topic>Demand side management</topic><topic>Electric power demand</topic><topic>Electricity</topic><topic>Electricity pricing</topic><topic>Electricity supply industry</topic><topic>Energy consumption</topic><topic>Energy costs</topic><topic>Energy management</topic><topic>Energy sources</topic><topic>Heating</topic><topic>information gap decision theory (IGDT)</topic><topic>Integer programming</topic><topic>integrated demand response (IDR)</topic><topic>Kuhn-Tucker method</topic><topic>large consumer</topic><topic>Linear programming</topic><topic>Market prices</topic><topic>mathematical program with equilibrium constraints (MPEC)</topic><topic>Mixed integer</topic><topic>multi-energy systems</topic><topic>Optimization</topic><topic>Procurement</topic><topic>Robustness (mathematics)</topic><topic>Uncertainty</topic><topic>Wind power generation</topic><topic>Wind turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mirzaei, Mohammad Amin</creatorcontrib><creatorcontrib>Mehrjerdi, Hasan</creatorcontrib><creatorcontrib>Saatloo, Amin Mansour</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><jtitle>IEEE systems journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mirzaei, Mohammad Amin</au><au>Mehrjerdi, Hasan</au><au>Saatloo, Amin Mansour</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Strategic Behavior of a Large Multi-Energy Consumer in Electricity Market Considering Integrated Demand Response</atitle><jtitle>IEEE systems journal</jtitle><stitle>JSYST</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>17</volume><issue>4</issue><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>1932-8184</issn><eissn>1937-9234</eissn><coden>ISJEB2</coden><abstract>Integrated demand response (IDR) is a cost-effective approach to promoting renewable energy consumption and energy saving in multi-energy systems. The efficient use of the flexibility of demand-side energy sources as well as the elasticity of energy demands increases the tendency for the development of IDR. This article proposes a bilevel optimization framework that allows a large multi-energy consumer (LMEC) equipped with self-provided energy resources to manipulate electricity market prices using optimum execution of the IDR to fulfill electricity, heating, and cooling needs, simultaneously. At the upper level, the LMEC operator seeks to minimize energy procurement costs associated with electricity, heating, and cooling, whereas at the lower level, the aim is to maximize social welfare from the market operator's perspective in order to establish the market-clearing price. The Karush-Kuhn-Tucker (KKT) conditions and strong duality theory are utilized to convert the model into a single-level mixed-integer linear programming framework. In addition, a developed information gap decision theory technique is adopted to cope with the uncertainty of power generation from wind turbines owned by the LMEC operator under a risk-averse scheme. The numerical findings demonstrate the potential of IDR in influencing power market prices to the benefit of LMEC and lowering its energy procurement costs.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSYST.2023.3299706</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8793-7642</orcidid><orcidid>https://orcid.org/0000-0001-9775-8456</orcidid><orcidid>https://orcid.org/0000-0002-7230-7648</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1932-8184 |
ispartof | IEEE systems journal, 2023-12, Vol.17 (4), p.1-11 |
issn | 1932-8184 1937-9234 |
language | eng |
recordid | cdi_proquest_journals_2901428159 |
source | IEEE Electronic Library (IEL) |
subjects | Behavioral sciences Bilevel optimization Cooling Costs Decision theory Demand side management Electric power demand Electricity Electricity pricing Electricity supply industry Energy consumption Energy costs Energy management Energy sources Heating information gap decision theory (IGDT) Integer programming integrated demand response (IDR) Kuhn-Tucker method large consumer Linear programming Market prices mathematical program with equilibrium constraints (MPEC) Mixed integer multi-energy systems Optimization Procurement Robustness (mathematics) Uncertainty Wind power generation Wind turbines |
title | Robust Strategic Behavior of a Large Multi-Energy Consumer in Electricity Market Considering Integrated Demand Response |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A42%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Strategic%20Behavior%20of%20a%20Large%20Multi-Energy%20Consumer%20in%20Electricity%20Market%20Considering%20Integrated%20Demand%20Response&rft.jtitle=IEEE%20systems%20journal&rft.au=Mirzaei,%20Mohammad%20Amin&rft.date=2023-12-01&rft.volume=17&rft.issue=4&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=1932-8184&rft.eissn=1937-9234&rft.coden=ISJEB2&rft_id=info:doi/10.1109/JSYST.2023.3299706&rft_dat=%3Cproquest_RIE%3E2901428159%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901428159&rft_id=info:pmid/&rft_ieee_id=10233128&rfr_iscdi=true |