A lightweight vortex model for unsteady motion of airfoils

A low-order vortex model has been developed for analysing the unsteady aerodynamics of airfoils. The model employs an infinitely thin vortex sheet in place of the attached boundary layer and a sheet of point vortices for the shed shear layer. The strength and direction of the vortex sheet shed at th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2023-12, Vol.977, Article A22
Hauptverfasser: Dumoulin, Denis, Eldredge, Jeff D., Chatelain, Philippe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 977
creator Dumoulin, Denis
Eldredge, Jeff D.
Chatelain, Philippe
description A low-order vortex model has been developed for analysing the unsteady aerodynamics of airfoils. The model employs an infinitely thin vortex sheet in place of the attached boundary layer and a sheet of point vortices for the shed shear layer. The strength and direction of the vortex sheet shed at the airfoil trailing edge are determined by an unsteady Kutta condition. The roll-up of the ambient shear layer is represented by a unique point vortex, which is consistently fed circulation by the last point vortex of the free vortex sheet. The model's dimensionality is reduced by using three tuning parameters to balance representational accuracy and computational efficiency. The performance of the model is evaluated through experiments involving impulsively started and heaving and pitching airfoils. The model accurately captures the dynamics of the development and evolution of the shed vortical structure while requiring minimal computational resources. The validity of the model is confirmed through comparison with experimental force measurements and a baseline unsteady panel method that does not transfer circulation in the free vortex sheet.
doi_str_mv 10.1017/jfm.2023.997
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2901405611</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_997</cupid><sourcerecordid>2901405611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c297t-ca0e789de5358bae8230260eb75909d9250a9731076bc768daf4971d54930c623</originalsourceid><addsrcrecordid>eNptkE1LxDAQhoMouK7e_AEBr7ZOkiZpvC2LX7DgRc8hbZK1pW3WpKvuv7fLLnjxMgPD874DD0LXBHICRN61vs8pUJYrJU_QjBRCZVIU_BTNACjNCKFwji5SagEIAyVn6H6Bu2b9MX67_cRfIY7uB_fBug77EPF2SKMzdjedxiYMOHhsmuhD06VLdOZNl9zVcc_R--PD2_I5W70-vSwXq6ymSo5ZbcDJUlnHGS8r40rKgApwleQKlFWUg1GSEZCiqqUorfGFksTyQjGoBWVzdHPo3cTwuXVp1G3YxmF6qakCUgAXhEzU7YGqY0gpOq83selN3GkCem9HT3b03o6e7Ex4fsRNX8XGrt1f67-BXwgKZXs</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901405611</pqid></control><display><type>article</type><title>A lightweight vortex model for unsteady motion of airfoils</title><source>Cambridge core</source><creator>Dumoulin, Denis ; Eldredge, Jeff D. ; Chatelain, Philippe</creator><creatorcontrib>Dumoulin, Denis ; Eldredge, Jeff D. ; Chatelain, Philippe</creatorcontrib><description>A low-order vortex model has been developed for analysing the unsteady aerodynamics of airfoils. The model employs an infinitely thin vortex sheet in place of the attached boundary layer and a sheet of point vortices for the shed shear layer. The strength and direction of the vortex sheet shed at the airfoil trailing edge are determined by an unsteady Kutta condition. The roll-up of the ambient shear layer is represented by a unique point vortex, which is consistently fed circulation by the last point vortex of the free vortex sheet. The model's dimensionality is reduced by using three tuning parameters to balance representational accuracy and computational efficiency. The performance of the model is evaluated through experiments involving impulsively started and heaving and pitching airfoils. The model accurately captures the dynamics of the development and evolution of the shed vortical structure while requiring minimal computational resources. The validity of the model is confirmed through comparison with experimental force measurements and a baseline unsteady panel method that does not transfer circulation in the free vortex sheet.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.997</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aerodynamics ; Airfoils ; Boundary layers ; Computer applications ; Force measurement ; JFM Papers ; Panel method (fluid dynamics) ; Pitching ; Reynolds number ; Shear ; Shear layers ; Unsteady aerodynamics ; Velocity ; Vortex sheets ; Vortices</subject><ispartof>Journal of fluid mechanics, 2023-12, Vol.977, Article A22</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press.</rights><rights>The Author(s), 2023. Published by Cambridge University Press. This work is licensed under the Creative Commons Attribution License This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0), which permits unrestricted re-use, distribution and reproduction, provided the original article is properly cited. (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c297t-ca0e789de5358bae8230260eb75909d9250a9731076bc768daf4971d54930c623</cites><orcidid>0000-0002-2672-706X ; 0000-0003-4942-5803 ; 0000-0001-9891-5265</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112023009977/type/journal_article$$EHTML$$P50$$Gcambridge$$Hfree_for_read</linktohtml><link.rule.ids>164,314,780,784,27924,27925,55628</link.rule.ids></links><search><creatorcontrib>Dumoulin, Denis</creatorcontrib><creatorcontrib>Eldredge, Jeff D.</creatorcontrib><creatorcontrib>Chatelain, Philippe</creatorcontrib><title>A lightweight vortex model for unsteady motion of airfoils</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>A low-order vortex model has been developed for analysing the unsteady aerodynamics of airfoils. The model employs an infinitely thin vortex sheet in place of the attached boundary layer and a sheet of point vortices for the shed shear layer. The strength and direction of the vortex sheet shed at the airfoil trailing edge are determined by an unsteady Kutta condition. The roll-up of the ambient shear layer is represented by a unique point vortex, which is consistently fed circulation by the last point vortex of the free vortex sheet. The model's dimensionality is reduced by using three tuning parameters to balance representational accuracy and computational efficiency. The performance of the model is evaluated through experiments involving impulsively started and heaving and pitching airfoils. The model accurately captures the dynamics of the development and evolution of the shed vortical structure while requiring minimal computational resources. The validity of the model is confirmed through comparison with experimental force measurements and a baseline unsteady panel method that does not transfer circulation in the free vortex sheet.</description><subject>Aerodynamics</subject><subject>Airfoils</subject><subject>Boundary layers</subject><subject>Computer applications</subject><subject>Force measurement</subject><subject>JFM Papers</subject><subject>Panel method (fluid dynamics)</subject><subject>Pitching</subject><subject>Reynolds number</subject><subject>Shear</subject><subject>Shear layers</subject><subject>Unsteady aerodynamics</subject><subject>Velocity</subject><subject>Vortex sheets</subject><subject>Vortices</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>IKXGN</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkE1LxDAQhoMouK7e_AEBr7ZOkiZpvC2LX7DgRc8hbZK1pW3WpKvuv7fLLnjxMgPD874DD0LXBHICRN61vs8pUJYrJU_QjBRCZVIU_BTNACjNCKFwji5SagEIAyVn6H6Bu2b9MX67_cRfIY7uB_fBug77EPF2SKMzdjedxiYMOHhsmuhD06VLdOZNl9zVcc_R--PD2_I5W70-vSwXq6ymSo5ZbcDJUlnHGS8r40rKgApwleQKlFWUg1GSEZCiqqUorfGFksTyQjGoBWVzdHPo3cTwuXVp1G3YxmF6qakCUgAXhEzU7YGqY0gpOq83selN3GkCem9HT3b03o6e7Ex4fsRNX8XGrt1f67-BXwgKZXs</recordid><startdate>20231214</startdate><enddate>20231214</enddate><creator>Dumoulin, Denis</creator><creator>Eldredge, Jeff D.</creator><creator>Chatelain, Philippe</creator><general>Cambridge University Press</general><scope>IKXGN</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-2672-706X</orcidid><orcidid>https://orcid.org/0000-0003-4942-5803</orcidid><orcidid>https://orcid.org/0000-0001-9891-5265</orcidid></search><sort><creationdate>20231214</creationdate><title>A lightweight vortex model for unsteady motion of airfoils</title><author>Dumoulin, Denis ; Eldredge, Jeff D. ; Chatelain, Philippe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c297t-ca0e789de5358bae8230260eb75909d9250a9731076bc768daf4971d54930c623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aerodynamics</topic><topic>Airfoils</topic><topic>Boundary layers</topic><topic>Computer applications</topic><topic>Force measurement</topic><topic>JFM Papers</topic><topic>Panel method (fluid dynamics)</topic><topic>Pitching</topic><topic>Reynolds number</topic><topic>Shear</topic><topic>Shear layers</topic><topic>Unsteady aerodynamics</topic><topic>Velocity</topic><topic>Vortex sheets</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dumoulin, Denis</creatorcontrib><creatorcontrib>Eldredge, Jeff D.</creatorcontrib><creatorcontrib>Chatelain, Philippe</creatorcontrib><collection>CUP_剑桥大学出版社OA刊</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dumoulin, Denis</au><au>Eldredge, Jeff D.</au><au>Chatelain, Philippe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A lightweight vortex model for unsteady motion of airfoils</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-12-14</date><risdate>2023</risdate><volume>977</volume><artnum>A22</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>A low-order vortex model has been developed for analysing the unsteady aerodynamics of airfoils. The model employs an infinitely thin vortex sheet in place of the attached boundary layer and a sheet of point vortices for the shed shear layer. The strength and direction of the vortex sheet shed at the airfoil trailing edge are determined by an unsteady Kutta condition. The roll-up of the ambient shear layer is represented by a unique point vortex, which is consistently fed circulation by the last point vortex of the free vortex sheet. The model's dimensionality is reduced by using three tuning parameters to balance representational accuracy and computational efficiency. The performance of the model is evaluated through experiments involving impulsively started and heaving and pitching airfoils. The model accurately captures the dynamics of the development and evolution of the shed vortical structure while requiring minimal computational resources. The validity of the model is confirmed through comparison with experimental force measurements and a baseline unsteady panel method that does not transfer circulation in the free vortex sheet.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.997</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0002-2672-706X</orcidid><orcidid>https://orcid.org/0000-0003-4942-5803</orcidid><orcidid>https://orcid.org/0000-0001-9891-5265</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2023-12, Vol.977, Article A22
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2901405611
source Cambridge core
subjects Aerodynamics
Airfoils
Boundary layers
Computer applications
Force measurement
JFM Papers
Panel method (fluid dynamics)
Pitching
Reynolds number
Shear
Shear layers
Unsteady aerodynamics
Velocity
Vortex sheets
Vortices
title A lightweight vortex model for unsteady motion of airfoils
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T09%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20lightweight%20vortex%20model%20for%20unsteady%20motion%20of%20airfoils&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Dumoulin,%20Denis&rft.date=2023-12-14&rft.volume=977&rft.artnum=A22&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.997&rft_dat=%3Cproquest_cross%3E2901405611%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901405611&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_997&rfr_iscdi=true