Impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay

Summary This paper investigates the impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay. By using max‐separable Lyapunov functions and Razumikhin technique, sufficient conditions ensuring μ$$ \mu $$‐stability are derived. It should be noted that...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2024-01, Vol.34 (2), p.1257-1276
Hauptverfasser: Yang, Huitao, Zhang, Yu, Zhu, Jingwen, Hong, Shanshan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1276
container_issue 2
container_start_page 1257
container_title International journal of robust and nonlinear control
container_volume 34
creator Yang, Huitao
Zhang, Yu
Zhu, Jingwen
Hong, Shanshan
description Summary This paper investigates the impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay. By using max‐separable Lyapunov functions and Razumikhin technique, sufficient conditions ensuring μ$$ \mu $$‐stability are derived. It should be noted that it is the first time that impulsive stabilization results for such systems are given. A numerical example is presented to demonstrate the effectiveness of the control strategy.
doi_str_mv 10.1002/rnc.7026
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2901395785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901395785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2546-bc8e19dd61ef04458fcd46da13f0b7e69d32607afbacddda0dfd68d0e84444e73</originalsourceid><addsrcrecordid>eNp10MtKxDAUBuAgCo6j4CME3LjpmKTXLGXwMjAoiK5D2pzMdGiTmrQj3fkIPqNPYuq4NZsE8p0LP0KXlCwoIezGmWqRE5YdoRklnEeUxfx4eic8KjiLT9GZ9ztCwh9LZqhZtd3Q-HoPuLKmd7bBVuPB-F6WDeCtbe0GDNjB4876up-gH30PrZ-ggo0DwNYA_qj7bSgs7WAUKNzXLXx_fu2lG2uzCbCR4zk60bLxcPF3z9Hb_d3r8jFaPz-slrfrqGJpkkVlVQDlSmUUNEmStNCVSjIlaaxJmUPGVcwykktdykopJYnSKisUgSIJB_J4jq4OfTtn3wfwvdjZwZkwUjBOaMzTvEiDuj6oylnvHWjRuboN-wpKxJSlCFmKKctAowP9qBsY_3Xi5Wn5638AiMV5iA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901395785</pqid></control><display><type>article</type><title>Impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay</title><source>Wiley Journals</source><creator>Yang, Huitao ; Zhang, Yu ; Zhu, Jingwen ; Hong, Shanshan</creator><creatorcontrib>Yang, Huitao ; Zhang, Yu ; Zhu, Jingwen ; Hong, Shanshan</creatorcontrib><description>Summary This paper investigates the impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay. By using max‐separable Lyapunov functions and Razumikhin technique, sufficient conditions ensuring μ$$ \mu $$‐stability are derived. It should be noted that it is the first time that impulsive stabilization results for such systems are given. A numerical example is presented to demonstrate the effectiveness of the control strategy.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.7026</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Control systems ; homogeneous system ; impulsive control ; Liapunov functions ; positive system ; System effectiveness ; unbounded time‐varying delay ; μ$$ \mu $$‐stability</subject><ispartof>International journal of robust and nonlinear control, 2024-01, Vol.34 (2), p.1257-1276</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2546-bc8e19dd61ef04458fcd46da13f0b7e69d32607afbacddda0dfd68d0e84444e73</cites><orcidid>0000-0002-3089-7504 ; 0000-0002-7054-5335 ; 0000-0002-7077-7013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.7026$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.7026$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yang, Huitao</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Zhu, Jingwen</creatorcontrib><creatorcontrib>Hong, Shanshan</creatorcontrib><title>Impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay</title><title>International journal of robust and nonlinear control</title><description>Summary This paper investigates the impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay. By using max‐separable Lyapunov functions and Razumikhin technique, sufficient conditions ensuring μ$$ \mu $$‐stability are derived. It should be noted that it is the first time that impulsive stabilization results for such systems are given. A numerical example is presented to demonstrate the effectiveness of the control strategy.</description><subject>Control systems</subject><subject>homogeneous system</subject><subject>impulsive control</subject><subject>Liapunov functions</subject><subject>positive system</subject><subject>System effectiveness</subject><subject>unbounded time‐varying delay</subject><subject>μ$$ \mu $$‐stability</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10MtKxDAUBuAgCo6j4CME3LjpmKTXLGXwMjAoiK5D2pzMdGiTmrQj3fkIPqNPYuq4NZsE8p0LP0KXlCwoIezGmWqRE5YdoRklnEeUxfx4eic8KjiLT9GZ9ztCwh9LZqhZtd3Q-HoPuLKmd7bBVuPB-F6WDeCtbe0GDNjB4876up-gH30PrZ-ggo0DwNYA_qj7bSgs7WAUKNzXLXx_fu2lG2uzCbCR4zk60bLxcPF3z9Hb_d3r8jFaPz-slrfrqGJpkkVlVQDlSmUUNEmStNCVSjIlaaxJmUPGVcwykktdykopJYnSKisUgSIJB_J4jq4OfTtn3wfwvdjZwZkwUjBOaMzTvEiDuj6oylnvHWjRuboN-wpKxJSlCFmKKctAowP9qBsY_3Xi5Wn5638AiMV5iA</recordid><startdate>20240125</startdate><enddate>20240125</enddate><creator>Yang, Huitao</creator><creator>Zhang, Yu</creator><creator>Zhu, Jingwen</creator><creator>Hong, Shanshan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3089-7504</orcidid><orcidid>https://orcid.org/0000-0002-7054-5335</orcidid><orcidid>https://orcid.org/0000-0002-7077-7013</orcidid></search><sort><creationdate>20240125</creationdate><title>Impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay</title><author>Yang, Huitao ; Zhang, Yu ; Zhu, Jingwen ; Hong, Shanshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2546-bc8e19dd61ef04458fcd46da13f0b7e69d32607afbacddda0dfd68d0e84444e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Control systems</topic><topic>homogeneous system</topic><topic>impulsive control</topic><topic>Liapunov functions</topic><topic>positive system</topic><topic>System effectiveness</topic><topic>unbounded time‐varying delay</topic><topic>μ$$ \mu $$‐stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Huitao</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Zhu, Jingwen</creatorcontrib><creatorcontrib>Hong, Shanshan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Huitao</au><au>Zhang, Yu</au><au>Zhu, Jingwen</au><au>Hong, Shanshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2024-01-25</date><risdate>2024</risdate><volume>34</volume><issue>2</issue><spage>1257</spage><epage>1276</epage><pages>1257-1276</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary This paper investigates the impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay. By using max‐separable Lyapunov functions and Razumikhin technique, sufficient conditions ensuring μ$$ \mu $$‐stability are derived. It should be noted that it is the first time that impulsive stabilization results for such systems are given. A numerical example is presented to demonstrate the effectiveness of the control strategy.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.7026</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3089-7504</orcidid><orcidid>https://orcid.org/0000-0002-7054-5335</orcidid><orcidid>https://orcid.org/0000-0002-7077-7013</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2024-01, Vol.34 (2), p.1257-1276
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2901395785
source Wiley Journals
subjects Control systems
homogeneous system
impulsive control
Liapunov functions
positive system
System effectiveness
unbounded time‐varying delay
μ$$ \mu $$‐stability
title Impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A12%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impulsive%20control%20of%20unstable%20homogeneous%20positive%20systems%20of%20degree%20one%20with%20unbounded%20time%E2%80%90varying%20delay&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Yang,%20Huitao&rft.date=2024-01-25&rft.volume=34&rft.issue=2&rft.spage=1257&rft.epage=1276&rft.pages=1257-1276&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.7026&rft_dat=%3Cproquest_cross%3E2901395785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901395785&rft_id=info:pmid/&rfr_iscdi=true