Impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay
Summary This paper investigates the impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay. By using max‐separable Lyapunov functions and Razumikhin technique, sufficient conditions ensuring μ$$ \mu $$‐stability are derived. It should be noted that...
Gespeichert in:
Veröffentlicht in: | International journal of robust and nonlinear control 2024-01, Vol.34 (2), p.1257-1276 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1276 |
---|---|
container_issue | 2 |
container_start_page | 1257 |
container_title | International journal of robust and nonlinear control |
container_volume | 34 |
creator | Yang, Huitao Zhang, Yu Zhu, Jingwen Hong, Shanshan |
description | Summary
This paper investigates the impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay. By using max‐separable Lyapunov functions and Razumikhin technique, sufficient conditions ensuring μ$$ \mu $$‐stability are derived. It should be noted that it is the first time that impulsive stabilization results for such systems are given. A numerical example is presented to demonstrate the effectiveness of the control strategy. |
doi_str_mv | 10.1002/rnc.7026 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2901395785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901395785</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2546-bc8e19dd61ef04458fcd46da13f0b7e69d32607afbacddda0dfd68d0e84444e73</originalsourceid><addsrcrecordid>eNp10MtKxDAUBuAgCo6j4CME3LjpmKTXLGXwMjAoiK5D2pzMdGiTmrQj3fkIPqNPYuq4NZsE8p0LP0KXlCwoIezGmWqRE5YdoRklnEeUxfx4eic8KjiLT9GZ9ztCwh9LZqhZtd3Q-HoPuLKmd7bBVuPB-F6WDeCtbe0GDNjB4876up-gH30PrZ-ggo0DwNYA_qj7bSgs7WAUKNzXLXx_fu2lG2uzCbCR4zk60bLxcPF3z9Hb_d3r8jFaPz-slrfrqGJpkkVlVQDlSmUUNEmStNCVSjIlaaxJmUPGVcwykktdykopJYnSKisUgSIJB_J4jq4OfTtn3wfwvdjZwZkwUjBOaMzTvEiDuj6oylnvHWjRuboN-wpKxJSlCFmKKctAowP9qBsY_3Xi5Wn5638AiMV5iA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901395785</pqid></control><display><type>article</type><title>Impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay</title><source>Wiley Journals</source><creator>Yang, Huitao ; Zhang, Yu ; Zhu, Jingwen ; Hong, Shanshan</creator><creatorcontrib>Yang, Huitao ; Zhang, Yu ; Zhu, Jingwen ; Hong, Shanshan</creatorcontrib><description>Summary
This paper investigates the impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay. By using max‐separable Lyapunov functions and Razumikhin technique, sufficient conditions ensuring μ$$ \mu $$‐stability are derived. It should be noted that it is the first time that impulsive stabilization results for such systems are given. A numerical example is presented to demonstrate the effectiveness of the control strategy.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.7026</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Control systems ; homogeneous system ; impulsive control ; Liapunov functions ; positive system ; System effectiveness ; unbounded time‐varying delay ; μ$$ \mu $$‐stability</subject><ispartof>International journal of robust and nonlinear control, 2024-01, Vol.34 (2), p.1257-1276</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2546-bc8e19dd61ef04458fcd46da13f0b7e69d32607afbacddda0dfd68d0e84444e73</cites><orcidid>0000-0002-3089-7504 ; 0000-0002-7054-5335 ; 0000-0002-7077-7013</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.7026$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.7026$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yang, Huitao</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Zhu, Jingwen</creatorcontrib><creatorcontrib>Hong, Shanshan</creatorcontrib><title>Impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay</title><title>International journal of robust and nonlinear control</title><description>Summary
This paper investigates the impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay. By using max‐separable Lyapunov functions and Razumikhin technique, sufficient conditions ensuring μ$$ \mu $$‐stability are derived. It should be noted that it is the first time that impulsive stabilization results for such systems are given. A numerical example is presented to demonstrate the effectiveness of the control strategy.</description><subject>Control systems</subject><subject>homogeneous system</subject><subject>impulsive control</subject><subject>Liapunov functions</subject><subject>positive system</subject><subject>System effectiveness</subject><subject>unbounded time‐varying delay</subject><subject>μ$$ \mu $$‐stability</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10MtKxDAUBuAgCo6j4CME3LjpmKTXLGXwMjAoiK5D2pzMdGiTmrQj3fkIPqNPYuq4NZsE8p0LP0KXlCwoIezGmWqRE5YdoRklnEeUxfx4eic8KjiLT9GZ9ztCwh9LZqhZtd3Q-HoPuLKmd7bBVuPB-F6WDeCtbe0GDNjB4876up-gH30PrZ-ggo0DwNYA_qj7bSgs7WAUKNzXLXx_fu2lG2uzCbCR4zk60bLxcPF3z9Hb_d3r8jFaPz-slrfrqGJpkkVlVQDlSmUUNEmStNCVSjIlaaxJmUPGVcwykktdykopJYnSKisUgSIJB_J4jq4OfTtn3wfwvdjZwZkwUjBOaMzTvEiDuj6oylnvHWjRuboN-wpKxJSlCFmKKctAowP9qBsY_3Xi5Wn5638AiMV5iA</recordid><startdate>20240125</startdate><enddate>20240125</enddate><creator>Yang, Huitao</creator><creator>Zhang, Yu</creator><creator>Zhu, Jingwen</creator><creator>Hong, Shanshan</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-3089-7504</orcidid><orcidid>https://orcid.org/0000-0002-7054-5335</orcidid><orcidid>https://orcid.org/0000-0002-7077-7013</orcidid></search><sort><creationdate>20240125</creationdate><title>Impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay</title><author>Yang, Huitao ; Zhang, Yu ; Zhu, Jingwen ; Hong, Shanshan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2546-bc8e19dd61ef04458fcd46da13f0b7e69d32607afbacddda0dfd68d0e84444e73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Control systems</topic><topic>homogeneous system</topic><topic>impulsive control</topic><topic>Liapunov functions</topic><topic>positive system</topic><topic>System effectiveness</topic><topic>unbounded time‐varying delay</topic><topic>μ$$ \mu $$‐stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Huitao</creatorcontrib><creatorcontrib>Zhang, Yu</creatorcontrib><creatorcontrib>Zhu, Jingwen</creatorcontrib><creatorcontrib>Hong, Shanshan</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Huitao</au><au>Zhang, Yu</au><au>Zhu, Jingwen</au><au>Hong, Shanshan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2024-01-25</date><risdate>2024</risdate><volume>34</volume><issue>2</issue><spage>1257</spage><epage>1276</epage><pages>1257-1276</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>Summary
This paper investigates the impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay. By using max‐separable Lyapunov functions and Razumikhin technique, sufficient conditions ensuring μ$$ \mu $$‐stability are derived. It should be noted that it is the first time that impulsive stabilization results for such systems are given. A numerical example is presented to demonstrate the effectiveness of the control strategy.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.7026</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-3089-7504</orcidid><orcidid>https://orcid.org/0000-0002-7054-5335</orcidid><orcidid>https://orcid.org/0000-0002-7077-7013</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1049-8923 |
ispartof | International journal of robust and nonlinear control, 2024-01, Vol.34 (2), p.1257-1276 |
issn | 1049-8923 1099-1239 |
language | eng |
recordid | cdi_proquest_journals_2901395785 |
source | Wiley Journals |
subjects | Control systems homogeneous system impulsive control Liapunov functions positive system System effectiveness unbounded time‐varying delay μ$$ \mu $$‐stability |
title | Impulsive control of unstable homogeneous positive systems of degree one with unbounded time‐varying delay |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T04%3A12%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Impulsive%20control%20of%20unstable%20homogeneous%20positive%20systems%20of%20degree%20one%20with%20unbounded%20time%E2%80%90varying%20delay&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Yang,%20Huitao&rft.date=2024-01-25&rft.volume=34&rft.issue=2&rft.spage=1257&rft.epage=1276&rft.pages=1257-1276&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.7026&rft_dat=%3Cproquest_cross%3E2901395785%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901395785&rft_id=info:pmid/&rfr_iscdi=true |