Lifelong learning‐based multilayer neural network control of nonlinear continuous‐time strict‐feedback systems

In this paper, we investigate lifelong learning (LL)‐based tracking control for partially uncertain strict feedback nonlinear systems with state constraints, employing a singular value decomposition (SVD) of the multilayer neural networks (MNNs) activation function based weight tuning scheme. The no...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2024-01, Vol.34 (2), p.1397-1416
Hauptverfasser: Ganie, Irfan Ahmad, Jagannathan, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1416
container_issue 2
container_start_page 1397
container_title International journal of robust and nonlinear control
container_volume 34
creator Ganie, Irfan Ahmad
Jagannathan, S.
description In this paper, we investigate lifelong learning (LL)‐based tracking control for partially uncertain strict feedback nonlinear systems with state constraints, employing a singular value decomposition (SVD) of the multilayer neural networks (MNNs) activation function based weight tuning scheme. The novel SVD‐based approach extends the MNN weight tuning to n$$ n $$ layers. A unique online LL method, based on tracking error, is integrated into the MNN weight update laws to counteract catastrophic forgetting. To adeptly address constraints for safety assurances, taking into account the effects caused by disturbances, we utilize a time‐varying barrier Lyapunov function (TBLF) that ensures a uniformly ultimately bounded closed‐loop system. The effectiveness of the proposed safe LL MNN approach is demonstrated through a leader‐follower formation scenario involving unknown kinematics and dynamics. Supporting simulation results of mobile robot formation control are provided, confirming the theoretical findings.
doi_str_mv 10.1002/rnc.7039
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2901395510</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901395510</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3279-bde18f93de11a454a4e34f40f1ac221795b3a2bbd3f74d16e814ff99dd04fbf3</originalsourceid><addsrcrecordid>eNp1kMtKAzEUhoMoWKvgIwTcuJma2zjNUoo3KArS_ZCZOSlp06QmGcrsfASf0Scxbd26-s_lO_-BH6FrSiaUEHYXXDupCJcnaESJlAVlXJ7uayGLqWT8HF3EuCIk75gYoTQ3Gqx3S2xBBWfc8ufru1EROrzpbTJWDRCwgz4omyXtfFjj1rsUvMVeY-edNS6fHobG9b6P2SGZDeCYgmlT7jRA16h2jeMQE2ziJTrTyka4-tMxWjw9LmYvxfz9-XX2MC9azipZNB3QqZY8C1WiFEoAF1oQTVXLGK1k2XDFmqbjuhIdvYcpFVpL2XVE6EbzMbo52m6D_-whpnrl--Dyx5pJQrksS0oydXuk2uBjDKDrbTAbFYaaknofaZ0jrfeRZrQ4ojtjYfiXqz_eZgf-F96AfjM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901395510</pqid></control><display><type>article</type><title>Lifelong learning‐based multilayer neural network control of nonlinear continuous‐time strict‐feedback systems</title><source>Wiley Journals</source><creator>Ganie, Irfan Ahmad ; Jagannathan, S.</creator><creatorcontrib>Ganie, Irfan Ahmad ; Jagannathan, S.</creatorcontrib><description>In this paper, we investigate lifelong learning (LL)‐based tracking control for partially uncertain strict feedback nonlinear systems with state constraints, employing a singular value decomposition (SVD) of the multilayer neural networks (MNNs) activation function based weight tuning scheme. The novel SVD‐based approach extends the MNN weight tuning to n$$ n $$ layers. A unique online LL method, based on tracking error, is integrated into the MNN weight update laws to counteract catastrophic forgetting. To adeptly address constraints for safety assurances, taking into account the effects caused by disturbances, we utilize a time‐varying barrier Lyapunov function (TBLF) that ensures a uniformly ultimately bounded closed‐loop system. The effectiveness of the proposed safe LL MNN approach is demonstrated through a leader‐follower formation scenario involving unknown kinematics and dynamics. Supporting simulation results of mobile robot formation control are provided, confirming the theoretical findings.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.7039</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>adaptive control ; Feedback ; formation control ; Kinematics ; Liapunov functions ; Lifelong learning ; multilayer neural networks ; Multilayers ; Network control ; Neural networks ; Nonlinear control ; Nonlinear systems ; Robot control ; Singular value decomposition ; Tracking control ; Tracking errors ; Tuning</subject><ispartof>International journal of robust and nonlinear control, 2024-01, Vol.34 (2), p.1397-1416</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3279-bde18f93de11a454a4e34f40f1ac221795b3a2bbd3f74d16e814ff99dd04fbf3</citedby><cites>FETCH-LOGICAL-c3279-bde18f93de11a454a4e34f40f1ac221795b3a2bbd3f74d16e814ff99dd04fbf3</cites><orcidid>0000-0002-0376-735X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Frnc.7039$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Frnc.7039$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Ganie, Irfan Ahmad</creatorcontrib><creatorcontrib>Jagannathan, S.</creatorcontrib><title>Lifelong learning‐based multilayer neural network control of nonlinear continuous‐time strict‐feedback systems</title><title>International journal of robust and nonlinear control</title><description>In this paper, we investigate lifelong learning (LL)‐based tracking control for partially uncertain strict feedback nonlinear systems with state constraints, employing a singular value decomposition (SVD) of the multilayer neural networks (MNNs) activation function based weight tuning scheme. The novel SVD‐based approach extends the MNN weight tuning to n$$ n $$ layers. A unique online LL method, based on tracking error, is integrated into the MNN weight update laws to counteract catastrophic forgetting. To adeptly address constraints for safety assurances, taking into account the effects caused by disturbances, we utilize a time‐varying barrier Lyapunov function (TBLF) that ensures a uniformly ultimately bounded closed‐loop system. The effectiveness of the proposed safe LL MNN approach is demonstrated through a leader‐follower formation scenario involving unknown kinematics and dynamics. Supporting simulation results of mobile robot formation control are provided, confirming the theoretical findings.</description><subject>adaptive control</subject><subject>Feedback</subject><subject>formation control</subject><subject>Kinematics</subject><subject>Liapunov functions</subject><subject>Lifelong learning</subject><subject>multilayer neural networks</subject><subject>Multilayers</subject><subject>Network control</subject><subject>Neural networks</subject><subject>Nonlinear control</subject><subject>Nonlinear systems</subject><subject>Robot control</subject><subject>Singular value decomposition</subject><subject>Tracking control</subject><subject>Tracking errors</subject><subject>Tuning</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp1kMtKAzEUhoMoWKvgIwTcuJma2zjNUoo3KArS_ZCZOSlp06QmGcrsfASf0Scxbd26-s_lO_-BH6FrSiaUEHYXXDupCJcnaESJlAVlXJ7uayGLqWT8HF3EuCIk75gYoTQ3Gqx3S2xBBWfc8ufru1EROrzpbTJWDRCwgz4omyXtfFjj1rsUvMVeY-edNS6fHobG9b6P2SGZDeCYgmlT7jRA16h2jeMQE2ziJTrTyka4-tMxWjw9LmYvxfz9-XX2MC9azipZNB3QqZY8C1WiFEoAF1oQTVXLGK1k2XDFmqbjuhIdvYcpFVpL2XVE6EbzMbo52m6D_-whpnrl--Dyx5pJQrksS0oydXuk2uBjDKDrbTAbFYaaknofaZ0jrfeRZrQ4ojtjYfiXqz_eZgf-F96AfjM</recordid><startdate>20240125</startdate><enddate>20240125</enddate><creator>Ganie, Irfan Ahmad</creator><creator>Jagannathan, S.</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-0376-735X</orcidid></search><sort><creationdate>20240125</creationdate><title>Lifelong learning‐based multilayer neural network control of nonlinear continuous‐time strict‐feedback systems</title><author>Ganie, Irfan Ahmad ; Jagannathan, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3279-bde18f93de11a454a4e34f40f1ac221795b3a2bbd3f74d16e814ff99dd04fbf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>adaptive control</topic><topic>Feedback</topic><topic>formation control</topic><topic>Kinematics</topic><topic>Liapunov functions</topic><topic>Lifelong learning</topic><topic>multilayer neural networks</topic><topic>Multilayers</topic><topic>Network control</topic><topic>Neural networks</topic><topic>Nonlinear control</topic><topic>Nonlinear systems</topic><topic>Robot control</topic><topic>Singular value decomposition</topic><topic>Tracking control</topic><topic>Tracking errors</topic><topic>Tuning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ganie, Irfan Ahmad</creatorcontrib><creatorcontrib>Jagannathan, S.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ganie, Irfan Ahmad</au><au>Jagannathan, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lifelong learning‐based multilayer neural network control of nonlinear continuous‐time strict‐feedback systems</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2024-01-25</date><risdate>2024</risdate><volume>34</volume><issue>2</issue><spage>1397</spage><epage>1416</epage><pages>1397-1416</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>In this paper, we investigate lifelong learning (LL)‐based tracking control for partially uncertain strict feedback nonlinear systems with state constraints, employing a singular value decomposition (SVD) of the multilayer neural networks (MNNs) activation function based weight tuning scheme. The novel SVD‐based approach extends the MNN weight tuning to n$$ n $$ layers. A unique online LL method, based on tracking error, is integrated into the MNN weight update laws to counteract catastrophic forgetting. To adeptly address constraints for safety assurances, taking into account the effects caused by disturbances, we utilize a time‐varying barrier Lyapunov function (TBLF) that ensures a uniformly ultimately bounded closed‐loop system. The effectiveness of the proposed safe LL MNN approach is demonstrated through a leader‐follower formation scenario involving unknown kinematics and dynamics. Supporting simulation results of mobile robot formation control are provided, confirming the theoretical findings.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.7039</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-0376-735X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2024-01, Vol.34 (2), p.1397-1416
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2901395510
source Wiley Journals
subjects adaptive control
Feedback
formation control
Kinematics
Liapunov functions
Lifelong learning
multilayer neural networks
Multilayers
Network control
Neural networks
Nonlinear control
Nonlinear systems
Robot control
Singular value decomposition
Tracking control
Tracking errors
Tuning
title Lifelong learning‐based multilayer neural network control of nonlinear continuous‐time strict‐feedback systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T08%3A20%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lifelong%20learning%E2%80%90based%20multilayer%20neural%20network%20control%20of%20nonlinear%20continuous%E2%80%90time%20strict%E2%80%90feedback%20systems&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Ganie,%20Irfan%20Ahmad&rft.date=2024-01-25&rft.volume=34&rft.issue=2&rft.spage=1397&rft.epage=1416&rft.pages=1397-1416&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.7039&rft_dat=%3Cproquest_cross%3E2901395510%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901395510&rft_id=info:pmid/&rfr_iscdi=true