An ensemble model for water temperature prediction in intensive aquaculture
In intensive aquaculture systems, accurate water temperature prediction is crucial for aquaculture efficiency. Traditional prediction models often have limitations in dealing with strongly coupled, nonlinear, and time-varying water temperature data. A novel hybrid model for temperature prediction is...
Gespeichert in:
Veröffentlicht in: | IEEE access 2023-01, Vol.11, p.1-1 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | IEEE access |
container_volume | 11 |
creator | Wang, Mingyan Xu, Qing Cao, Yingying Hassan, Shahbaz Gul Liu, Wenjun He, Min Liu, Tonglai Xu, Longqin Cao, Liang Liu, Shuangyin Wu, Huilin |
description | In intensive aquaculture systems, accurate water temperature prediction is crucial for aquaculture efficiency. Traditional prediction models often have limitations in dealing with strongly coupled, nonlinear, and time-varying water temperature data. A novel hybrid model for temperature prediction is proposed to improve prediction generalization ability and robustness. The model integrates advanced data processing and prediction techniques. Firstly, the VMD method is utilized to achieve effective data decomposition and noise reduction. Secondly, the CNN algorithm is applied to achieve feature extraction of the data. Finally, the bi-directional LSTM and self-concerned combination are used to obtain the final prediction results. The experimental results show that the MAE, RMSE, MSE, MAPE, and R 2 of the VMD-CNN-BILSTM-SA combination prediction model proposed in this paper are 0.016, 0.143, 0.020, 0.035, and 0.978, respectively. Compared with other deep learning models, the BiLSTM model presented in this paper improves the R 2 by 13.2% compared with LSTM and 13.7% over the GRU model. This study can be applied in fishery farming, which can reduce the risk of farming and promote the modernization of fishery. |
doi_str_mv | 10.1109/ACCESS.2023.3339190 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2901391731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10341251</ieee_id><doaj_id>oai_doaj_org_article_63c45b9acf7c4ee3975f4b6e3eae3d3a</doaj_id><sourcerecordid>2901391731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-ff980c152b301dc93a5d38aaa36d44a70021dbda95dd37665b63756ff4c2efe43</originalsourceid><addsrcrecordid>eNpNUVFLwzAQLqLgmPsF-lDweTPpJenyOMbU4cCH6XO4Jhfp6JYtbRX_va0V2XFwx_F93x33JcktZzPOmX5YLJer7XaWsQxmAKC5ZhfJKONKT0GCujzrr5NJXe9YF_NuJPNR8rI4pHSoaV9UlO6Doyr1IaZf2FBMG9ofKWLTRkqPkVxpmzIc0rLPpmOVn5TiqUXbVj3mJrnyWNU0-avj5P1x9bZ8nm5en9bLxWZqBdPN1Hs9Z5bLrADGndWA0sEcEUE5ITBnLOOucKilc5ArJQsFuVTeC5uRJwHjZD3ouoA7c4zlHuO3CVia30GIHwZjU9qKjAIrZKHR-twKItC59KJQBIQEDrDTuh-0jjGcWqobswttPHTnm0wz3n0zB96hYEDZGOo6kv_fypnpTTCDCaY3wfyZ0LHuBlZJRGcMEDyTHH4AetSD-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901391731</pqid></control><display><type>article</type><title>An ensemble model for water temperature prediction in intensive aquaculture</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Mingyan ; Xu, Qing ; Cao, Yingying ; Hassan, Shahbaz Gul ; Liu, Wenjun ; He, Min ; Liu, Tonglai ; Xu, Longqin ; Cao, Liang ; Liu, Shuangyin ; Wu, Huilin</creator><creatorcontrib>Wang, Mingyan ; Xu, Qing ; Cao, Yingying ; Hassan, Shahbaz Gul ; Liu, Wenjun ; He, Min ; Liu, Tonglai ; Xu, Longqin ; Cao, Liang ; Liu, Shuangyin ; Wu, Huilin</creatorcontrib><description>In intensive aquaculture systems, accurate water temperature prediction is crucial for aquaculture efficiency. Traditional prediction models often have limitations in dealing with strongly coupled, nonlinear, and time-varying water temperature data. A novel hybrid model for temperature prediction is proposed to improve prediction generalization ability and robustness. The model integrates advanced data processing and prediction techniques. Firstly, the VMD method is utilized to achieve effective data decomposition and noise reduction. Secondly, the CNN algorithm is applied to achieve feature extraction of the data. Finally, the bi-directional LSTM and self-concerned combination are used to obtain the final prediction results. The experimental results show that the MAE, RMSE, MSE, MAPE, and R 2 of the VMD-CNN-BILSTM-SA combination prediction model proposed in this paper are 0.016, 0.143, 0.020, 0.035, and 0.978, respectively. Compared with other deep learning models, the BiLSTM model presented in this paper improves the R 2 by 13.2% compared with LSTM and 13.7% over the GRU model. This study can be applied in fishery farming, which can reduce the risk of farming and promote the modernization of fishery.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3339190</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Aquaculture ; BiLSTM-self attention ; Combination model ; Data models ; Data processing ; Feature extraction ; Fisheries ; Machine learning ; Modernization ; Noise reduction ; Ocean temperature ; Prediction models ; Predictive models ; Temperature distribution ; Variational Mode Decomposition (VMD) ; Water quality ; Water temperature ; Water temperature prediction</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-ff980c152b301dc93a5d38aaa36d44a70021dbda95dd37665b63756ff4c2efe43</citedby><cites>FETCH-LOGICAL-c409t-ff980c152b301dc93a5d38aaa36d44a70021dbda95dd37665b63756ff4c2efe43</cites><orcidid>0000-0002-1845-5623 ; 0000-0001-7915-6910 ; 0000-0003-2820-0111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10341251$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Wang, Mingyan</creatorcontrib><creatorcontrib>Xu, Qing</creatorcontrib><creatorcontrib>Cao, Yingying</creatorcontrib><creatorcontrib>Hassan, Shahbaz Gul</creatorcontrib><creatorcontrib>Liu, Wenjun</creatorcontrib><creatorcontrib>He, Min</creatorcontrib><creatorcontrib>Liu, Tonglai</creatorcontrib><creatorcontrib>Xu, Longqin</creatorcontrib><creatorcontrib>Cao, Liang</creatorcontrib><creatorcontrib>Liu, Shuangyin</creatorcontrib><creatorcontrib>Wu, Huilin</creatorcontrib><title>An ensemble model for water temperature prediction in intensive aquaculture</title><title>IEEE access</title><addtitle>Access</addtitle><description>In intensive aquaculture systems, accurate water temperature prediction is crucial for aquaculture efficiency. Traditional prediction models often have limitations in dealing with strongly coupled, nonlinear, and time-varying water temperature data. A novel hybrid model for temperature prediction is proposed to improve prediction generalization ability and robustness. The model integrates advanced data processing and prediction techniques. Firstly, the VMD method is utilized to achieve effective data decomposition and noise reduction. Secondly, the CNN algorithm is applied to achieve feature extraction of the data. Finally, the bi-directional LSTM and self-concerned combination are used to obtain the final prediction results. The experimental results show that the MAE, RMSE, MSE, MAPE, and R 2 of the VMD-CNN-BILSTM-SA combination prediction model proposed in this paper are 0.016, 0.143, 0.020, 0.035, and 0.978, respectively. Compared with other deep learning models, the BiLSTM model presented in this paper improves the R 2 by 13.2% compared with LSTM and 13.7% over the GRU model. This study can be applied in fishery farming, which can reduce the risk of farming and promote the modernization of fishery.</description><subject>Algorithms</subject><subject>Aquaculture</subject><subject>BiLSTM-self attention</subject><subject>Combination model</subject><subject>Data models</subject><subject>Data processing</subject><subject>Feature extraction</subject><subject>Fisheries</subject><subject>Machine learning</subject><subject>Modernization</subject><subject>Noise reduction</subject><subject>Ocean temperature</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Temperature distribution</subject><subject>Variational Mode Decomposition (VMD)</subject><subject>Water quality</subject><subject>Water temperature</subject><subject>Water temperature prediction</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUVFLwzAQLqLgmPsF-lDweTPpJenyOMbU4cCH6XO4Jhfp6JYtbRX_va0V2XFwx_F93x33JcktZzPOmX5YLJer7XaWsQxmAKC5ZhfJKONKT0GCujzrr5NJXe9YF_NuJPNR8rI4pHSoaV9UlO6Doyr1IaZf2FBMG9ofKWLTRkqPkVxpmzIc0rLPpmOVn5TiqUXbVj3mJrnyWNU0-avj5P1x9bZ8nm5en9bLxWZqBdPN1Hs9Z5bLrADGndWA0sEcEUE5ITBnLOOucKilc5ArJQsFuVTeC5uRJwHjZD3ouoA7c4zlHuO3CVia30GIHwZjU9qKjAIrZKHR-twKItC59KJQBIQEDrDTuh-0jjGcWqobswttPHTnm0wz3n0zB96hYEDZGOo6kv_fypnpTTCDCaY3wfyZ0LHuBlZJRGcMEDyTHH4AetSD-g</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wang, Mingyan</creator><creator>Xu, Qing</creator><creator>Cao, Yingying</creator><creator>Hassan, Shahbaz Gul</creator><creator>Liu, Wenjun</creator><creator>He, Min</creator><creator>Liu, Tonglai</creator><creator>Xu, Longqin</creator><creator>Cao, Liang</creator><creator>Liu, Shuangyin</creator><creator>Wu, Huilin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1845-5623</orcidid><orcidid>https://orcid.org/0000-0001-7915-6910</orcidid><orcidid>https://orcid.org/0000-0003-2820-0111</orcidid></search><sort><creationdate>20230101</creationdate><title>An ensemble model for water temperature prediction in intensive aquaculture</title><author>Wang, Mingyan ; Xu, Qing ; Cao, Yingying ; Hassan, Shahbaz Gul ; Liu, Wenjun ; He, Min ; Liu, Tonglai ; Xu, Longqin ; Cao, Liang ; Liu, Shuangyin ; Wu, Huilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-ff980c152b301dc93a5d38aaa36d44a70021dbda95dd37665b63756ff4c2efe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Aquaculture</topic><topic>BiLSTM-self attention</topic><topic>Combination model</topic><topic>Data models</topic><topic>Data processing</topic><topic>Feature extraction</topic><topic>Fisheries</topic><topic>Machine learning</topic><topic>Modernization</topic><topic>Noise reduction</topic><topic>Ocean temperature</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Temperature distribution</topic><topic>Variational Mode Decomposition (VMD)</topic><topic>Water quality</topic><topic>Water temperature</topic><topic>Water temperature prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mingyan</creatorcontrib><creatorcontrib>Xu, Qing</creatorcontrib><creatorcontrib>Cao, Yingying</creatorcontrib><creatorcontrib>Hassan, Shahbaz Gul</creatorcontrib><creatorcontrib>Liu, Wenjun</creatorcontrib><creatorcontrib>He, Min</creatorcontrib><creatorcontrib>Liu, Tonglai</creatorcontrib><creatorcontrib>Xu, Longqin</creatorcontrib><creatorcontrib>Cao, Liang</creatorcontrib><creatorcontrib>Liu, Shuangyin</creatorcontrib><creatorcontrib>Wu, Huilin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mingyan</au><au>Xu, Qing</au><au>Cao, Yingying</au><au>Hassan, Shahbaz Gul</au><au>Liu, Wenjun</au><au>He, Min</au><au>Liu, Tonglai</au><au>Xu, Longqin</au><au>Cao, Liang</au><au>Liu, Shuangyin</au><au>Wu, Huilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ensemble model for water temperature prediction in intensive aquaculture</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In intensive aquaculture systems, accurate water temperature prediction is crucial for aquaculture efficiency. Traditional prediction models often have limitations in dealing with strongly coupled, nonlinear, and time-varying water temperature data. A novel hybrid model for temperature prediction is proposed to improve prediction generalization ability and robustness. The model integrates advanced data processing and prediction techniques. Firstly, the VMD method is utilized to achieve effective data decomposition and noise reduction. Secondly, the CNN algorithm is applied to achieve feature extraction of the data. Finally, the bi-directional LSTM and self-concerned combination are used to obtain the final prediction results. The experimental results show that the MAE, RMSE, MSE, MAPE, and R 2 of the VMD-CNN-BILSTM-SA combination prediction model proposed in this paper are 0.016, 0.143, 0.020, 0.035, and 0.978, respectively. Compared with other deep learning models, the BiLSTM model presented in this paper improves the R 2 by 13.2% compared with LSTM and 13.7% over the GRU model. This study can be applied in fishery farming, which can reduce the risk of farming and promote the modernization of fishery.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3339190</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1845-5623</orcidid><orcidid>https://orcid.org/0000-0001-7915-6910</orcidid><orcidid>https://orcid.org/0000-0003-2820-0111</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2023-01, Vol.11, p.1-1 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_proquest_journals_2901391731 |
source | IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Aquaculture BiLSTM-self attention Combination model Data models Data processing Feature extraction Fisheries Machine learning Modernization Noise reduction Ocean temperature Prediction models Predictive models Temperature distribution Variational Mode Decomposition (VMD) Water quality Water temperature Water temperature prediction |
title | An ensemble model for water temperature prediction in intensive aquaculture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ensemble%20model%20for%20water%20temperature%20prediction%20in%20intensive%20aquaculture&rft.jtitle=IEEE%20access&rft.au=Wang,%20Mingyan&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3339190&rft_dat=%3Cproquest_doaj_%3E2901391731%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901391731&rft_id=info:pmid/&rft_ieee_id=10341251&rft_doaj_id=oai_doaj_org_article_63c45b9acf7c4ee3975f4b6e3eae3d3a&rfr_iscdi=true |