An ensemble model for water temperature prediction in intensive aquaculture

In intensive aquaculture systems, accurate water temperature prediction is crucial for aquaculture efficiency. Traditional prediction models often have limitations in dealing with strongly coupled, nonlinear, and time-varying water temperature data. A novel hybrid model for temperature prediction is...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023-01, Vol.11, p.1-1
Hauptverfasser: Wang, Mingyan, Xu, Qing, Cao, Yingying, Hassan, Shahbaz Gul, Liu, Wenjun, He, Min, Liu, Tonglai, Xu, Longqin, Cao, Liang, Liu, Shuangyin, Wu, Huilin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue
container_start_page 1
container_title IEEE access
container_volume 11
creator Wang, Mingyan
Xu, Qing
Cao, Yingying
Hassan, Shahbaz Gul
Liu, Wenjun
He, Min
Liu, Tonglai
Xu, Longqin
Cao, Liang
Liu, Shuangyin
Wu, Huilin
description In intensive aquaculture systems, accurate water temperature prediction is crucial for aquaculture efficiency. Traditional prediction models often have limitations in dealing with strongly coupled, nonlinear, and time-varying water temperature data. A novel hybrid model for temperature prediction is proposed to improve prediction generalization ability and robustness. The model integrates advanced data processing and prediction techniques. Firstly, the VMD method is utilized to achieve effective data decomposition and noise reduction. Secondly, the CNN algorithm is applied to achieve feature extraction of the data. Finally, the bi-directional LSTM and self-concerned combination are used to obtain the final prediction results. The experimental results show that the MAE, RMSE, MSE, MAPE, and R 2 of the VMD-CNN-BILSTM-SA combination prediction model proposed in this paper are 0.016, 0.143, 0.020, 0.035, and 0.978, respectively. Compared with other deep learning models, the BiLSTM model presented in this paper improves the R 2 by 13.2% compared with LSTM and 13.7% over the GRU model. This study can be applied in fishery farming, which can reduce the risk of farming and promote the modernization of fishery.
doi_str_mv 10.1109/ACCESS.2023.3339190
format Article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2901391731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10341251</ieee_id><doaj_id>oai_doaj_org_article_63c45b9acf7c4ee3975f4b6e3eae3d3a</doaj_id><sourcerecordid>2901391731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c409t-ff980c152b301dc93a5d38aaa36d44a70021dbda95dd37665b63756ff4c2efe43</originalsourceid><addsrcrecordid>eNpNUVFLwzAQLqLgmPsF-lDweTPpJenyOMbU4cCH6XO4Jhfp6JYtbRX_va0V2XFwx_F93x33JcktZzPOmX5YLJer7XaWsQxmAKC5ZhfJKONKT0GCujzrr5NJXe9YF_NuJPNR8rI4pHSoaV9UlO6Doyr1IaZf2FBMG9ofKWLTRkqPkVxpmzIc0rLPpmOVn5TiqUXbVj3mJrnyWNU0-avj5P1x9bZ8nm5en9bLxWZqBdPN1Hs9Z5bLrADGndWA0sEcEUE5ITBnLOOucKilc5ArJQsFuVTeC5uRJwHjZD3ouoA7c4zlHuO3CVia30GIHwZjU9qKjAIrZKHR-twKItC59KJQBIQEDrDTuh-0jjGcWqobswttPHTnm0wz3n0zB96hYEDZGOo6kv_fypnpTTCDCaY3wfyZ0LHuBlZJRGcMEDyTHH4AetSD-g</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901391731</pqid></control><display><type>article</type><title>An ensemble model for water temperature prediction in intensive aquaculture</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Wang, Mingyan ; Xu, Qing ; Cao, Yingying ; Hassan, Shahbaz Gul ; Liu, Wenjun ; He, Min ; Liu, Tonglai ; Xu, Longqin ; Cao, Liang ; Liu, Shuangyin ; Wu, Huilin</creator><creatorcontrib>Wang, Mingyan ; Xu, Qing ; Cao, Yingying ; Hassan, Shahbaz Gul ; Liu, Wenjun ; He, Min ; Liu, Tonglai ; Xu, Longqin ; Cao, Liang ; Liu, Shuangyin ; Wu, Huilin</creatorcontrib><description>In intensive aquaculture systems, accurate water temperature prediction is crucial for aquaculture efficiency. Traditional prediction models often have limitations in dealing with strongly coupled, nonlinear, and time-varying water temperature data. A novel hybrid model for temperature prediction is proposed to improve prediction generalization ability and robustness. The model integrates advanced data processing and prediction techniques. Firstly, the VMD method is utilized to achieve effective data decomposition and noise reduction. Secondly, the CNN algorithm is applied to achieve feature extraction of the data. Finally, the bi-directional LSTM and self-concerned combination are used to obtain the final prediction results. The experimental results show that the MAE, RMSE, MSE, MAPE, and R 2 of the VMD-CNN-BILSTM-SA combination prediction model proposed in this paper are 0.016, 0.143, 0.020, 0.035, and 0.978, respectively. Compared with other deep learning models, the BiLSTM model presented in this paper improves the R 2 by 13.2% compared with LSTM and 13.7% over the GRU model. This study can be applied in fishery farming, which can reduce the risk of farming and promote the modernization of fishery.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3339190</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Aquaculture ; BiLSTM-self attention ; Combination model ; Data models ; Data processing ; Feature extraction ; Fisheries ; Machine learning ; Modernization ; Noise reduction ; Ocean temperature ; Prediction models ; Predictive models ; Temperature distribution ; Variational Mode Decomposition (VMD) ; Water quality ; Water temperature ; Water temperature prediction</subject><ispartof>IEEE access, 2023-01, Vol.11, p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c409t-ff980c152b301dc93a5d38aaa36d44a70021dbda95dd37665b63756ff4c2efe43</citedby><cites>FETCH-LOGICAL-c409t-ff980c152b301dc93a5d38aaa36d44a70021dbda95dd37665b63756ff4c2efe43</cites><orcidid>0000-0002-1845-5623 ; 0000-0001-7915-6910 ; 0000-0003-2820-0111</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10341251$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,861,2096,27614,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Wang, Mingyan</creatorcontrib><creatorcontrib>Xu, Qing</creatorcontrib><creatorcontrib>Cao, Yingying</creatorcontrib><creatorcontrib>Hassan, Shahbaz Gul</creatorcontrib><creatorcontrib>Liu, Wenjun</creatorcontrib><creatorcontrib>He, Min</creatorcontrib><creatorcontrib>Liu, Tonglai</creatorcontrib><creatorcontrib>Xu, Longqin</creatorcontrib><creatorcontrib>Cao, Liang</creatorcontrib><creatorcontrib>Liu, Shuangyin</creatorcontrib><creatorcontrib>Wu, Huilin</creatorcontrib><title>An ensemble model for water temperature prediction in intensive aquaculture</title><title>IEEE access</title><addtitle>Access</addtitle><description>In intensive aquaculture systems, accurate water temperature prediction is crucial for aquaculture efficiency. Traditional prediction models often have limitations in dealing with strongly coupled, nonlinear, and time-varying water temperature data. A novel hybrid model for temperature prediction is proposed to improve prediction generalization ability and robustness. The model integrates advanced data processing and prediction techniques. Firstly, the VMD method is utilized to achieve effective data decomposition and noise reduction. Secondly, the CNN algorithm is applied to achieve feature extraction of the data. Finally, the bi-directional LSTM and self-concerned combination are used to obtain the final prediction results. The experimental results show that the MAE, RMSE, MSE, MAPE, and R 2 of the VMD-CNN-BILSTM-SA combination prediction model proposed in this paper are 0.016, 0.143, 0.020, 0.035, and 0.978, respectively. Compared with other deep learning models, the BiLSTM model presented in this paper improves the R 2 by 13.2% compared with LSTM and 13.7% over the GRU model. This study can be applied in fishery farming, which can reduce the risk of farming and promote the modernization of fishery.</description><subject>Algorithms</subject><subject>Aquaculture</subject><subject>BiLSTM-self attention</subject><subject>Combination model</subject><subject>Data models</subject><subject>Data processing</subject><subject>Feature extraction</subject><subject>Fisheries</subject><subject>Machine learning</subject><subject>Modernization</subject><subject>Noise reduction</subject><subject>Ocean temperature</subject><subject>Prediction models</subject><subject>Predictive models</subject><subject>Temperature distribution</subject><subject>Variational Mode Decomposition (VMD)</subject><subject>Water quality</subject><subject>Water temperature</subject><subject>Water temperature prediction</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUVFLwzAQLqLgmPsF-lDweTPpJenyOMbU4cCH6XO4Jhfp6JYtbRX_va0V2XFwx_F93x33JcktZzPOmX5YLJer7XaWsQxmAKC5ZhfJKONKT0GCujzrr5NJXe9YF_NuJPNR8rI4pHSoaV9UlO6Doyr1IaZf2FBMG9ofKWLTRkqPkVxpmzIc0rLPpmOVn5TiqUXbVj3mJrnyWNU0-avj5P1x9bZ8nm5en9bLxWZqBdPN1Hs9Z5bLrADGndWA0sEcEUE5ITBnLOOucKilc5ArJQsFuVTeC5uRJwHjZD3ouoA7c4zlHuO3CVia30GIHwZjU9qKjAIrZKHR-twKItC59KJQBIQEDrDTuh-0jjGcWqobswttPHTnm0wz3n0zB96hYEDZGOo6kv_fypnpTTCDCaY3wfyZ0LHuBlZJRGcMEDyTHH4AetSD-g</recordid><startdate>20230101</startdate><enddate>20230101</enddate><creator>Wang, Mingyan</creator><creator>Xu, Qing</creator><creator>Cao, Yingying</creator><creator>Hassan, Shahbaz Gul</creator><creator>Liu, Wenjun</creator><creator>He, Min</creator><creator>Liu, Tonglai</creator><creator>Xu, Longqin</creator><creator>Cao, Liang</creator><creator>Liu, Shuangyin</creator><creator>Wu, Huilin</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1845-5623</orcidid><orcidid>https://orcid.org/0000-0001-7915-6910</orcidid><orcidid>https://orcid.org/0000-0003-2820-0111</orcidid></search><sort><creationdate>20230101</creationdate><title>An ensemble model for water temperature prediction in intensive aquaculture</title><author>Wang, Mingyan ; Xu, Qing ; Cao, Yingying ; Hassan, Shahbaz Gul ; Liu, Wenjun ; He, Min ; Liu, Tonglai ; Xu, Longqin ; Cao, Liang ; Liu, Shuangyin ; Wu, Huilin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c409t-ff980c152b301dc93a5d38aaa36d44a70021dbda95dd37665b63756ff4c2efe43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Aquaculture</topic><topic>BiLSTM-self attention</topic><topic>Combination model</topic><topic>Data models</topic><topic>Data processing</topic><topic>Feature extraction</topic><topic>Fisheries</topic><topic>Machine learning</topic><topic>Modernization</topic><topic>Noise reduction</topic><topic>Ocean temperature</topic><topic>Prediction models</topic><topic>Predictive models</topic><topic>Temperature distribution</topic><topic>Variational Mode Decomposition (VMD)</topic><topic>Water quality</topic><topic>Water temperature</topic><topic>Water temperature prediction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Mingyan</creatorcontrib><creatorcontrib>Xu, Qing</creatorcontrib><creatorcontrib>Cao, Yingying</creatorcontrib><creatorcontrib>Hassan, Shahbaz Gul</creatorcontrib><creatorcontrib>Liu, Wenjun</creatorcontrib><creatorcontrib>He, Min</creatorcontrib><creatorcontrib>Liu, Tonglai</creatorcontrib><creatorcontrib>Xu, Longqin</creatorcontrib><creatorcontrib>Cao, Liang</creatorcontrib><creatorcontrib>Liu, Shuangyin</creatorcontrib><creatorcontrib>Wu, Huilin</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Mingyan</au><au>Xu, Qing</au><au>Cao, Yingying</au><au>Hassan, Shahbaz Gul</au><au>Liu, Wenjun</au><au>He, Min</au><au>Liu, Tonglai</au><au>Xu, Longqin</au><au>Cao, Liang</au><au>Liu, Shuangyin</au><au>Wu, Huilin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An ensemble model for water temperature prediction in intensive aquaculture</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023-01-01</date><risdate>2023</risdate><volume>11</volume><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>In intensive aquaculture systems, accurate water temperature prediction is crucial for aquaculture efficiency. Traditional prediction models often have limitations in dealing with strongly coupled, nonlinear, and time-varying water temperature data. A novel hybrid model for temperature prediction is proposed to improve prediction generalization ability and robustness. The model integrates advanced data processing and prediction techniques. Firstly, the VMD method is utilized to achieve effective data decomposition and noise reduction. Secondly, the CNN algorithm is applied to achieve feature extraction of the data. Finally, the bi-directional LSTM and self-concerned combination are used to obtain the final prediction results. The experimental results show that the MAE, RMSE, MSE, MAPE, and R 2 of the VMD-CNN-BILSTM-SA combination prediction model proposed in this paper are 0.016, 0.143, 0.020, 0.035, and 0.978, respectively. Compared with other deep learning models, the BiLSTM model presented in this paper improves the R 2 by 13.2% compared with LSTM and 13.7% over the GRU model. This study can be applied in fishery farming, which can reduce the risk of farming and promote the modernization of fishery.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3339190</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-1845-5623</orcidid><orcidid>https://orcid.org/0000-0001-7915-6910</orcidid><orcidid>https://orcid.org/0000-0003-2820-0111</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023-01, Vol.11, p.1-1
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2901391731
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Aquaculture
BiLSTM-self attention
Combination model
Data models
Data processing
Feature extraction
Fisheries
Machine learning
Modernization
Noise reduction
Ocean temperature
Prediction models
Predictive models
Temperature distribution
Variational Mode Decomposition (VMD)
Water quality
Water temperature
Water temperature prediction
title An ensemble model for water temperature prediction in intensive aquaculture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T18%3A53%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20ensemble%20model%20for%20water%20temperature%20prediction%20in%20intensive%20aquaculture&rft.jtitle=IEEE%20access&rft.au=Wang,%20Mingyan&rft.date=2023-01-01&rft.volume=11&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3339190&rft_dat=%3Cproquest_doaj_%3E2901391731%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901391731&rft_id=info:pmid/&rft_ieee_id=10341251&rft_doaj_id=oai_doaj_org_article_63c45b9acf7c4ee3975f4b6e3eae3d3a&rfr_iscdi=true