Factorisation quantum groups
We develop vertex and factorisation algebra analogues of the theory of quasitriangular bialgebras. Analogously to the classical theory, we prove their categories of representations are controlled by spectral R-matrices. In the vertex algebra case this generalises previous notions due to Etingof-Kazh...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Latyntsev, Alexei |
description | We develop vertex and factorisation algebra analogues of the theory of quasitriangular bialgebras. Analogously to the classical theory, we prove their categories of representations are controlled by spectral R-matrices. In the vertex algebra case this generalises previous notions due to Etingof-Kazhdan and Frenkel-Reshetikhin. Finally we give examples, including Borcherds twists and homology vertex algebras. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2901291899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2901291899</sourcerecordid><originalsourceid>FETCH-proquest_journals_29012918993</originalsourceid><addsrcrecordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQcUtMLskvyixOLMnMz1MoLE3MKynNVUgvyi8tKOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjSwNDI0tDC0tLY-JUAQBq2SxG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901291899</pqid></control><display><type>article</type><title>Factorisation quantum groups</title><source>Free E- Journals</source><creator>Latyntsev, Alexei</creator><creatorcontrib>Latyntsev, Alexei</creatorcontrib><description>We develop vertex and factorisation algebra analogues of the theory of quasitriangular bialgebras. Analogously to the classical theory, we prove their categories of representations are controlled by spectral R-matrices. In the vertex algebra case this generalises previous notions due to Etingof-Kazhdan and Frenkel-Reshetikhin. Finally we give examples, including Borcherds twists and homology vertex algebras.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algebra ; Factorization ; Homology</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>777,781</link.rule.ids></links><search><creatorcontrib>Latyntsev, Alexei</creatorcontrib><title>Factorisation quantum groups</title><title>arXiv.org</title><description>We develop vertex and factorisation algebra analogues of the theory of quasitriangular bialgebras. Analogously to the classical theory, we prove their categories of representations are controlled by spectral R-matrices. In the vertex algebra case this generalises previous notions due to Etingof-Kazhdan and Frenkel-Reshetikhin. Finally we give examples, including Borcherds twists and homology vertex algebras.</description><subject>Algebra</subject><subject>Factorization</subject><subject>Homology</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNpjYuA0MjY21LUwMTLiYOAtLs4yMDAwMjM3MjU15mSQcUtMLskvyixOLMnMz1MoLE3MKynNVUgvyi8tKOZhYE1LzClO5YXS3AzKbq4hzh66BUX5haWpxSXxWfmlRXlAqXgjSwNDI0tDC0tLY-JUAQBq2SxG</recordid><startdate>20231212</startdate><enddate>20231212</enddate><creator>Latyntsev, Alexei</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231212</creationdate><title>Factorisation quantum groups</title><author>Latyntsev, Alexei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29012918993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Factorization</topic><topic>Homology</topic><toplevel>online_resources</toplevel><creatorcontrib>Latyntsev, Alexei</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Latyntsev, Alexei</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Factorisation quantum groups</atitle><jtitle>arXiv.org</jtitle><date>2023-12-12</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>We develop vertex and factorisation algebra analogues of the theory of quasitriangular bialgebras. Analogously to the classical theory, we prove their categories of representations are controlled by spectral R-matrices. In the vertex algebra case this generalises previous notions due to Etingof-Kazhdan and Frenkel-Reshetikhin. Finally we give examples, including Borcherds twists and homology vertex algebras.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2901291899 |
source | Free E- Journals |
subjects | Algebra Factorization Homology |
title | Factorisation quantum groups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A46%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Factorisation%20quantum%20groups&rft.jtitle=arXiv.org&rft.au=Latyntsev,%20Alexei&rft.date=2023-12-12&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2901291899%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901291899&rft_id=info:pmid/&rfr_iscdi=true |