Performance-Guaranteed Neuroadaptive Docking Control for UAV Aerial Recovery Under Carrier Maneuvering Flight

Aiming at reducing the airspace area requirement for aerial recovery, this work proposes a neuroadaptive maneuver docking control (NAMDC) scheme with appointed-time prescribed performance for an unmanned aerial vehicle (UAV) to be recovered. First, a six-degree-of-freedom (6-DOF) UAV model is establ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on aerospace and electronic systems 2023-12, Vol.59 (6), p.1-15
Hauptverfasser: Wang, Yanxiang, Wang, Honglun, Liu, Yiheng, Wu, Tiancai, Zhang, Menghua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 6
container_start_page 1
container_title IEEE transactions on aerospace and electronic systems
container_volume 59
creator Wang, Yanxiang
Wang, Honglun
Liu, Yiheng
Wu, Tiancai
Zhang, Menghua
description Aiming at reducing the airspace area requirement for aerial recovery, this work proposes a neuroadaptive maneuver docking control (NAMDC) scheme with appointed-time prescribed performance for an unmanned aerial vehicle (UAV) to be recovered. First, a six-degree-of-freedom (6-DOF) UAV model is established in the carrier frame to reflect the influence of the carrier movement on the UAV state. Then, an estimator-based minimal learning parameter neural network (EMLPNN) is developed for each subsystem to accurately approximate and compensate for the lumped disturbances with lower computational overhead. To guarantee the docking trajectory with preassigned transient and steady-state performance, an appointed-time prescribed performance control (APPC) algorithm is proposed and integrated with backstepping control. Furthermore, auxiliary systems are constructed to address the problem of input saturation by adjusting command signals. The stability of the closed-loop system is proved using a Lyapunov function. Finally, the effectiveness of the proposed method in the presence of carrier maneuvering flight, multiwind disturbances, different initial errors and actuator saturation is verified through numerical simulations.
doi_str_mv 10.1109/TAES.2023.3305336
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2901230450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10218740</ieee_id><sourcerecordid>2901230450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-af65f969dff883018bb91c43a49fb907a05b887e43ea428a1a5bc3be3f23e33a3</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGExH9ASYeNvFc3N3Zlu6RVEAT_IiC12ZaZrFYurhtSfj3lsDB02Qm7zMzeRi7lWIgpTAP89H4c6CEggGACAGiM9aTYTgMTCTgnPWEkHFgVCgv2VVdr7tWxxp6bPNO3jq_wSqnYNqix6ohWvJXar3DJW6bYkf80eU_RbXiiasa70reEXwx-uIj8gWW_INytyO_54tqSZ4n6H3R1ResqO3mB3JSFqvv5ppdWCxrujnVPltMxvPkKZi9TZ-T0SzIldFNgDYKrYnM0to4hu7zLDMy14Da2MyIIYowi-MhaSDUKkaJYZZDRmAVEABCn90f9269-22pbtK1a33VnUyVEVKB0KHoUvKYyr2ra0823fpig36fSpEerKYHq-nBanqy2jF3R6Ygon95JeOhFvAHhMR0fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901230450</pqid></control><display><type>article</type><title>Performance-Guaranteed Neuroadaptive Docking Control for UAV Aerial Recovery Under Carrier Maneuvering Flight</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yanxiang ; Wang, Honglun ; Liu, Yiheng ; Wu, Tiancai ; Zhang, Menghua</creator><creatorcontrib>Wang, Yanxiang ; Wang, Honglun ; Liu, Yiheng ; Wu, Tiancai ; Zhang, Menghua</creatorcontrib><description>Aiming at reducing the airspace area requirement for aerial recovery, this work proposes a neuroadaptive maneuver docking control (NAMDC) scheme with appointed-time prescribed performance for an unmanned aerial vehicle (UAV) to be recovered. First, a six-degree-of-freedom (6-DOF) UAV model is established in the carrier frame to reflect the influence of the carrier movement on the UAV state. Then, an estimator-based minimal learning parameter neural network (EMLPNN) is developed for each subsystem to accurately approximate and compensate for the lumped disturbances with lower computational overhead. To guarantee the docking trajectory with preassigned transient and steady-state performance, an appointed-time prescribed performance control (APPC) algorithm is proposed and integrated with backstepping control. Furthermore, auxiliary systems are constructed to address the problem of input saturation by adjusting command signals. The stability of the closed-loop system is proved using a Lyapunov function. Finally, the effectiveness of the proposed method in the presence of carrier maneuvering flight, multiwind disturbances, different initial errors and actuator saturation is verified through numerical simulations.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2023.3305336</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>6-DOF ; Actuators ; Algorithms ; Autonomous aerial vehicles ; Carrier mobility ; Closed loops ; Convergence ; Disturbances ; Docking ; Feedback control ; Flight ; Liapunov functions ; Maneuvers ; Mathematical models ; Neural networks ; Recovery ; Steady-state ; Subsystems ; Trajectory ; Transient analysis ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2023-12, Vol.59 (6), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-af65f969dff883018bb91c43a49fb907a05b887e43ea428a1a5bc3be3f23e33a3</citedby><cites>FETCH-LOGICAL-c294t-af65f969dff883018bb91c43a49fb907a05b887e43ea428a1a5bc3be3f23e33a3</cites><orcidid>0000-0003-3815-4876 ; 0000-0003-1286-8846 ; 0000-0002-7117-9760 ; 0000-0002-3821-443X ; 0000-0002-9354-5768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10218740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10218740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yanxiang</creatorcontrib><creatorcontrib>Wang, Honglun</creatorcontrib><creatorcontrib>Liu, Yiheng</creatorcontrib><creatorcontrib>Wu, Tiancai</creatorcontrib><creatorcontrib>Zhang, Menghua</creatorcontrib><title>Performance-Guaranteed Neuroadaptive Docking Control for UAV Aerial Recovery Under Carrier Maneuvering Flight</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Aiming at reducing the airspace area requirement for aerial recovery, this work proposes a neuroadaptive maneuver docking control (NAMDC) scheme with appointed-time prescribed performance for an unmanned aerial vehicle (UAV) to be recovered. First, a six-degree-of-freedom (6-DOF) UAV model is established in the carrier frame to reflect the influence of the carrier movement on the UAV state. Then, an estimator-based minimal learning parameter neural network (EMLPNN) is developed for each subsystem to accurately approximate and compensate for the lumped disturbances with lower computational overhead. To guarantee the docking trajectory with preassigned transient and steady-state performance, an appointed-time prescribed performance control (APPC) algorithm is proposed and integrated with backstepping control. Furthermore, auxiliary systems are constructed to address the problem of input saturation by adjusting command signals. The stability of the closed-loop system is proved using a Lyapunov function. Finally, the effectiveness of the proposed method in the presence of carrier maneuvering flight, multiwind disturbances, different initial errors and actuator saturation is verified through numerical simulations.</description><subject>6-DOF</subject><subject>Actuators</subject><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Carrier mobility</subject><subject>Closed loops</subject><subject>Convergence</subject><subject>Disturbances</subject><subject>Docking</subject><subject>Feedback control</subject><subject>Flight</subject><subject>Liapunov functions</subject><subject>Maneuvers</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Recovery</subject><subject>Steady-state</subject><subject>Subsystems</subject><subject>Trajectory</subject><subject>Transient analysis</subject><subject>Unmanned aerial vehicles</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhjdGExH9ASYeNvFc3N3Zlu6RVEAT_IiC12ZaZrFYurhtSfj3lsDB02Qm7zMzeRi7lWIgpTAP89H4c6CEggGACAGiM9aTYTgMTCTgnPWEkHFgVCgv2VVdr7tWxxp6bPNO3jq_wSqnYNqix6ohWvJXar3DJW6bYkf80eU_RbXiiasa70reEXwx-uIj8gWW_INytyO_54tqSZ4n6H3R1ResqO3mB3JSFqvv5ppdWCxrujnVPltMxvPkKZi9TZ-T0SzIldFNgDYKrYnM0to4hu7zLDMy14Da2MyIIYowi-MhaSDUKkaJYZZDRmAVEABCn90f9269-22pbtK1a33VnUyVEVKB0KHoUvKYyr2ra0823fpig36fSpEerKYHq-nBanqy2jF3R6Ygon95JeOhFvAHhMR0fg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Wang, Yanxiang</creator><creator>Wang, Honglun</creator><creator>Liu, Yiheng</creator><creator>Wu, Tiancai</creator><creator>Zhang, Menghua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3815-4876</orcidid><orcidid>https://orcid.org/0000-0003-1286-8846</orcidid><orcidid>https://orcid.org/0000-0002-7117-9760</orcidid><orcidid>https://orcid.org/0000-0002-3821-443X</orcidid><orcidid>https://orcid.org/0000-0002-9354-5768</orcidid></search><sort><creationdate>20231201</creationdate><title>Performance-Guaranteed Neuroadaptive Docking Control for UAV Aerial Recovery Under Carrier Maneuvering Flight</title><author>Wang, Yanxiang ; Wang, Honglun ; Liu, Yiheng ; Wu, Tiancai ; Zhang, Menghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-af65f969dff883018bb91c43a49fb907a05b887e43ea428a1a5bc3be3f23e33a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>6-DOF</topic><topic>Actuators</topic><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Carrier mobility</topic><topic>Closed loops</topic><topic>Convergence</topic><topic>Disturbances</topic><topic>Docking</topic><topic>Feedback control</topic><topic>Flight</topic><topic>Liapunov functions</topic><topic>Maneuvers</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Recovery</topic><topic>Steady-state</topic><topic>Subsystems</topic><topic>Trajectory</topic><topic>Transient analysis</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yanxiang</creatorcontrib><creatorcontrib>Wang, Honglun</creatorcontrib><creatorcontrib>Liu, Yiheng</creatorcontrib><creatorcontrib>Wu, Tiancai</creatorcontrib><creatorcontrib>Zhang, Menghua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yanxiang</au><au>Wang, Honglun</au><au>Liu, Yiheng</au><au>Wu, Tiancai</au><au>Zhang, Menghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance-Guaranteed Neuroadaptive Docking Control for UAV Aerial Recovery Under Carrier Maneuvering Flight</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>59</volume><issue>6</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Aiming at reducing the airspace area requirement for aerial recovery, this work proposes a neuroadaptive maneuver docking control (NAMDC) scheme with appointed-time prescribed performance for an unmanned aerial vehicle (UAV) to be recovered. First, a six-degree-of-freedom (6-DOF) UAV model is established in the carrier frame to reflect the influence of the carrier movement on the UAV state. Then, an estimator-based minimal learning parameter neural network (EMLPNN) is developed for each subsystem to accurately approximate and compensate for the lumped disturbances with lower computational overhead. To guarantee the docking trajectory with preassigned transient and steady-state performance, an appointed-time prescribed performance control (APPC) algorithm is proposed and integrated with backstepping control. Furthermore, auxiliary systems are constructed to address the problem of input saturation by adjusting command signals. The stability of the closed-loop system is proved using a Lyapunov function. Finally, the effectiveness of the proposed method in the presence of carrier maneuvering flight, multiwind disturbances, different initial errors and actuator saturation is verified through numerical simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2023.3305336</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3815-4876</orcidid><orcidid>https://orcid.org/0000-0003-1286-8846</orcidid><orcidid>https://orcid.org/0000-0002-7117-9760</orcidid><orcidid>https://orcid.org/0000-0002-3821-443X</orcidid><orcidid>https://orcid.org/0000-0002-9354-5768</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9251
ispartof IEEE transactions on aerospace and electronic systems, 2023-12, Vol.59 (6), p.1-15
issn 0018-9251
1557-9603
language eng
recordid cdi_proquest_journals_2901230450
source IEEE Electronic Library (IEL)
subjects 6-DOF
Actuators
Algorithms
Autonomous aerial vehicles
Carrier mobility
Closed loops
Convergence
Disturbances
Docking
Feedback control
Flight
Liapunov functions
Maneuvers
Mathematical models
Neural networks
Recovery
Steady-state
Subsystems
Trajectory
Transient analysis
Unmanned aerial vehicles
title Performance-Guaranteed Neuroadaptive Docking Control for UAV Aerial Recovery Under Carrier Maneuvering Flight
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance-Guaranteed%20Neuroadaptive%20Docking%20Control%20for%20UAV%20Aerial%20Recovery%20Under%20Carrier%20Maneuvering%20Flight&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Wang,%20Yanxiang&rft.date=2023-12-01&rft.volume=59&rft.issue=6&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2023.3305336&rft_dat=%3Cproquest_RIE%3E2901230450%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901230450&rft_id=info:pmid/&rft_ieee_id=10218740&rfr_iscdi=true