Performance-Guaranteed Neuroadaptive Docking Control for UAV Aerial Recovery Under Carrier Maneuvering Flight
Aiming at reducing the airspace area requirement for aerial recovery, this work proposes a neuroadaptive maneuver docking control (NAMDC) scheme with appointed-time prescribed performance for an unmanned aerial vehicle (UAV) to be recovered. First, a six-degree-of-freedom (6-DOF) UAV model is establ...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on aerospace and electronic systems 2023-12, Vol.59 (6), p.1-15 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15 |
---|---|
container_issue | 6 |
container_start_page | 1 |
container_title | IEEE transactions on aerospace and electronic systems |
container_volume | 59 |
creator | Wang, Yanxiang Wang, Honglun Liu, Yiheng Wu, Tiancai Zhang, Menghua |
description | Aiming at reducing the airspace area requirement for aerial recovery, this work proposes a neuroadaptive maneuver docking control (NAMDC) scheme with appointed-time prescribed performance for an unmanned aerial vehicle (UAV) to be recovered. First, a six-degree-of-freedom (6-DOF) UAV model is established in the carrier frame to reflect the influence of the carrier movement on the UAV state. Then, an estimator-based minimal learning parameter neural network (EMLPNN) is developed for each subsystem to accurately approximate and compensate for the lumped disturbances with lower computational overhead. To guarantee the docking trajectory with preassigned transient and steady-state performance, an appointed-time prescribed performance control (APPC) algorithm is proposed and integrated with backstepping control. Furthermore, auxiliary systems are constructed to address the problem of input saturation by adjusting command signals. The stability of the closed-loop system is proved using a Lyapunov function. Finally, the effectiveness of the proposed method in the presence of carrier maneuvering flight, multiwind disturbances, different initial errors and actuator saturation is verified through numerical simulations. |
doi_str_mv | 10.1109/TAES.2023.3305336 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2901230450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10218740</ieee_id><sourcerecordid>2901230450</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-af65f969dff883018bb91c43a49fb907a05b887e43ea428a1a5bc3be3f23e33a3</originalsourceid><addsrcrecordid>eNpNkE1PwkAQhjdGExH9ASYeNvFc3N3Zlu6RVEAT_IiC12ZaZrFYurhtSfj3lsDB02Qm7zMzeRi7lWIgpTAP89H4c6CEggGACAGiM9aTYTgMTCTgnPWEkHFgVCgv2VVdr7tWxxp6bPNO3jq_wSqnYNqix6ohWvJXar3DJW6bYkf80eU_RbXiiasa70reEXwx-uIj8gWW_INytyO_54tqSZ4n6H3R1ResqO3mB3JSFqvv5ppdWCxrujnVPltMxvPkKZi9TZ-T0SzIldFNgDYKrYnM0to4hu7zLDMy14Da2MyIIYowi-MhaSDUKkaJYZZDRmAVEABCn90f9269-22pbtK1a33VnUyVEVKB0KHoUvKYyr2ra0823fpig36fSpEerKYHq-nBanqy2jF3R6Ygon95JeOhFvAHhMR0fg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901230450</pqid></control><display><type>article</type><title>Performance-Guaranteed Neuroadaptive Docking Control for UAV Aerial Recovery Under Carrier Maneuvering Flight</title><source>IEEE Electronic Library (IEL)</source><creator>Wang, Yanxiang ; Wang, Honglun ; Liu, Yiheng ; Wu, Tiancai ; Zhang, Menghua</creator><creatorcontrib>Wang, Yanxiang ; Wang, Honglun ; Liu, Yiheng ; Wu, Tiancai ; Zhang, Menghua</creatorcontrib><description>Aiming at reducing the airspace area requirement for aerial recovery, this work proposes a neuroadaptive maneuver docking control (NAMDC) scheme with appointed-time prescribed performance for an unmanned aerial vehicle (UAV) to be recovered. First, a six-degree-of-freedom (6-DOF) UAV model is established in the carrier frame to reflect the influence of the carrier movement on the UAV state. Then, an estimator-based minimal learning parameter neural network (EMLPNN) is developed for each subsystem to accurately approximate and compensate for the lumped disturbances with lower computational overhead. To guarantee the docking trajectory with preassigned transient and steady-state performance, an appointed-time prescribed performance control (APPC) algorithm is proposed and integrated with backstepping control. Furthermore, auxiliary systems are constructed to address the problem of input saturation by adjusting command signals. The stability of the closed-loop system is proved using a Lyapunov function. Finally, the effectiveness of the proposed method in the presence of carrier maneuvering flight, multiwind disturbances, different initial errors and actuator saturation is verified through numerical simulations.</description><identifier>ISSN: 0018-9251</identifier><identifier>EISSN: 1557-9603</identifier><identifier>DOI: 10.1109/TAES.2023.3305336</identifier><identifier>CODEN: IEARAX</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>6-DOF ; Actuators ; Algorithms ; Autonomous aerial vehicles ; Carrier mobility ; Closed loops ; Convergence ; Disturbances ; Docking ; Feedback control ; Flight ; Liapunov functions ; Maneuvers ; Mathematical models ; Neural networks ; Recovery ; Steady-state ; Subsystems ; Trajectory ; Transient analysis ; Unmanned aerial vehicles</subject><ispartof>IEEE transactions on aerospace and electronic systems, 2023-12, Vol.59 (6), p.1-15</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-af65f969dff883018bb91c43a49fb907a05b887e43ea428a1a5bc3be3f23e33a3</citedby><cites>FETCH-LOGICAL-c294t-af65f969dff883018bb91c43a49fb907a05b887e43ea428a1a5bc3be3f23e33a3</cites><orcidid>0000-0003-3815-4876 ; 0000-0003-1286-8846 ; 0000-0002-7117-9760 ; 0000-0002-3821-443X ; 0000-0002-9354-5768</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10218740$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10218740$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yanxiang</creatorcontrib><creatorcontrib>Wang, Honglun</creatorcontrib><creatorcontrib>Liu, Yiheng</creatorcontrib><creatorcontrib>Wu, Tiancai</creatorcontrib><creatorcontrib>Zhang, Menghua</creatorcontrib><title>Performance-Guaranteed Neuroadaptive Docking Control for UAV Aerial Recovery Under Carrier Maneuvering Flight</title><title>IEEE transactions on aerospace and electronic systems</title><addtitle>T-AES</addtitle><description>Aiming at reducing the airspace area requirement for aerial recovery, this work proposes a neuroadaptive maneuver docking control (NAMDC) scheme with appointed-time prescribed performance for an unmanned aerial vehicle (UAV) to be recovered. First, a six-degree-of-freedom (6-DOF) UAV model is established in the carrier frame to reflect the influence of the carrier movement on the UAV state. Then, an estimator-based minimal learning parameter neural network (EMLPNN) is developed for each subsystem to accurately approximate and compensate for the lumped disturbances with lower computational overhead. To guarantee the docking trajectory with preassigned transient and steady-state performance, an appointed-time prescribed performance control (APPC) algorithm is proposed and integrated with backstepping control. Furthermore, auxiliary systems are constructed to address the problem of input saturation by adjusting command signals. The stability of the closed-loop system is proved using a Lyapunov function. Finally, the effectiveness of the proposed method in the presence of carrier maneuvering flight, multiwind disturbances, different initial errors and actuator saturation is verified through numerical simulations.</description><subject>6-DOF</subject><subject>Actuators</subject><subject>Algorithms</subject><subject>Autonomous aerial vehicles</subject><subject>Carrier mobility</subject><subject>Closed loops</subject><subject>Convergence</subject><subject>Disturbances</subject><subject>Docking</subject><subject>Feedback control</subject><subject>Flight</subject><subject>Liapunov functions</subject><subject>Maneuvers</subject><subject>Mathematical models</subject><subject>Neural networks</subject><subject>Recovery</subject><subject>Steady-state</subject><subject>Subsystems</subject><subject>Trajectory</subject><subject>Transient analysis</subject><subject>Unmanned aerial vehicles</subject><issn>0018-9251</issn><issn>1557-9603</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkE1PwkAQhjdGExH9ASYeNvFc3N3Zlu6RVEAT_IiC12ZaZrFYurhtSfj3lsDB02Qm7zMzeRi7lWIgpTAP89H4c6CEggGACAGiM9aTYTgMTCTgnPWEkHFgVCgv2VVdr7tWxxp6bPNO3jq_wSqnYNqix6ohWvJXar3DJW6bYkf80eU_RbXiiasa70reEXwx-uIj8gWW_INytyO_54tqSZ4n6H3R1ResqO3mB3JSFqvv5ppdWCxrujnVPltMxvPkKZi9TZ-T0SzIldFNgDYKrYnM0to4hu7zLDMy14Da2MyIIYowi-MhaSDUKkaJYZZDRmAVEABCn90f9269-22pbtK1a33VnUyVEVKB0KHoUvKYyr2ra0823fpig36fSpEerKYHq-nBanqy2jF3R6Ygon95JeOhFvAHhMR0fg</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Wang, Yanxiang</creator><creator>Wang, Honglun</creator><creator>Liu, Yiheng</creator><creator>Wu, Tiancai</creator><creator>Zhang, Menghua</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3815-4876</orcidid><orcidid>https://orcid.org/0000-0003-1286-8846</orcidid><orcidid>https://orcid.org/0000-0002-7117-9760</orcidid><orcidid>https://orcid.org/0000-0002-3821-443X</orcidid><orcidid>https://orcid.org/0000-0002-9354-5768</orcidid></search><sort><creationdate>20231201</creationdate><title>Performance-Guaranteed Neuroadaptive Docking Control for UAV Aerial Recovery Under Carrier Maneuvering Flight</title><author>Wang, Yanxiang ; Wang, Honglun ; Liu, Yiheng ; Wu, Tiancai ; Zhang, Menghua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-af65f969dff883018bb91c43a49fb907a05b887e43ea428a1a5bc3be3f23e33a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>6-DOF</topic><topic>Actuators</topic><topic>Algorithms</topic><topic>Autonomous aerial vehicles</topic><topic>Carrier mobility</topic><topic>Closed loops</topic><topic>Convergence</topic><topic>Disturbances</topic><topic>Docking</topic><topic>Feedback control</topic><topic>Flight</topic><topic>Liapunov functions</topic><topic>Maneuvers</topic><topic>Mathematical models</topic><topic>Neural networks</topic><topic>Recovery</topic><topic>Steady-state</topic><topic>Subsystems</topic><topic>Trajectory</topic><topic>Transient analysis</topic><topic>Unmanned aerial vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yanxiang</creatorcontrib><creatorcontrib>Wang, Honglun</creatorcontrib><creatorcontrib>Liu, Yiheng</creatorcontrib><creatorcontrib>Wu, Tiancai</creatorcontrib><creatorcontrib>Zhang, Menghua</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on aerospace and electronic systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yanxiang</au><au>Wang, Honglun</au><au>Liu, Yiheng</au><au>Wu, Tiancai</au><au>Zhang, Menghua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance-Guaranteed Neuroadaptive Docking Control for UAV Aerial Recovery Under Carrier Maneuvering Flight</atitle><jtitle>IEEE transactions on aerospace and electronic systems</jtitle><stitle>T-AES</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>59</volume><issue>6</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0018-9251</issn><eissn>1557-9603</eissn><coden>IEARAX</coden><abstract>Aiming at reducing the airspace area requirement for aerial recovery, this work proposes a neuroadaptive maneuver docking control (NAMDC) scheme with appointed-time prescribed performance for an unmanned aerial vehicle (UAV) to be recovered. First, a six-degree-of-freedom (6-DOF) UAV model is established in the carrier frame to reflect the influence of the carrier movement on the UAV state. Then, an estimator-based minimal learning parameter neural network (EMLPNN) is developed for each subsystem to accurately approximate and compensate for the lumped disturbances with lower computational overhead. To guarantee the docking trajectory with preassigned transient and steady-state performance, an appointed-time prescribed performance control (APPC) algorithm is proposed and integrated with backstepping control. Furthermore, auxiliary systems are constructed to address the problem of input saturation by adjusting command signals. The stability of the closed-loop system is proved using a Lyapunov function. Finally, the effectiveness of the proposed method in the presence of carrier maneuvering flight, multiwind disturbances, different initial errors and actuator saturation is verified through numerical simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TAES.2023.3305336</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0003-3815-4876</orcidid><orcidid>https://orcid.org/0000-0003-1286-8846</orcidid><orcidid>https://orcid.org/0000-0002-7117-9760</orcidid><orcidid>https://orcid.org/0000-0002-3821-443X</orcidid><orcidid>https://orcid.org/0000-0002-9354-5768</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0018-9251 |
ispartof | IEEE transactions on aerospace and electronic systems, 2023-12, Vol.59 (6), p.1-15 |
issn | 0018-9251 1557-9603 |
language | eng |
recordid | cdi_proquest_journals_2901230450 |
source | IEEE Electronic Library (IEL) |
subjects | 6-DOF Actuators Algorithms Autonomous aerial vehicles Carrier mobility Closed loops Convergence Disturbances Docking Feedback control Flight Liapunov functions Maneuvers Mathematical models Neural networks Recovery Steady-state Subsystems Trajectory Transient analysis Unmanned aerial vehicles |
title | Performance-Guaranteed Neuroadaptive Docking Control for UAV Aerial Recovery Under Carrier Maneuvering Flight |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T02%3A17%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance-Guaranteed%20Neuroadaptive%20Docking%20Control%20for%20UAV%20Aerial%20Recovery%20Under%20Carrier%20Maneuvering%20Flight&rft.jtitle=IEEE%20transactions%20on%20aerospace%20and%20electronic%20systems&rft.au=Wang,%20Yanxiang&rft.date=2023-12-01&rft.volume=59&rft.issue=6&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0018-9251&rft.eissn=1557-9603&rft.coden=IEARAX&rft_id=info:doi/10.1109/TAES.2023.3305336&rft_dat=%3Cproquest_RIE%3E2901230450%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901230450&rft_id=info:pmid/&rft_ieee_id=10218740&rfr_iscdi=true |