Prevent: An Unsupervised Approach to Predict Software Failures in Production

This paper presents P revent , a fully unsupervised approach to predict and localize failures in distributed enterprise applications. Software failures in production are unavoidable. Predicting failures and locating failing components online are the first steps to proactively manage faults in produc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on software engineering 2023-12, Vol.49 (12), p.1-15
Hauptverfasser: Denaro, Giovanni, Heydarov, Rahim, Mohebbi, Ali, Pezze, Mauro
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15
container_issue 12
container_start_page 1
container_title IEEE transactions on software engineering
container_volume 49
creator Denaro, Giovanni
Heydarov, Rahim
Mohebbi, Ali
Pezze, Mauro
description This paper presents P revent , a fully unsupervised approach to predict and localize failures in distributed enterprise applications. Software failures in production are unavoidable. Predicting failures and locating failing components online are the first steps to proactively manage faults in production. Many techniques predict failures from anomalous combinations of system metrics with supervised, weakly supervised, and semi-supervised learning models. Supervised approaches require large sets of labelled data not commonly available in large enterprise pplications, and address failure types that can be either captured with predefined rules or observed while training supervised odels. P revent integrates the core ingredients of unsupervised approaches into a novel fully unsupervised approach to predict failures and localize failing resources. The results of experimenting with P revent on a commercially-compliant distributed cloud system indicate that P revent provides more stable, reliable and timely predictions than supervised learning approaches, without requiring the often impractical training with labeled data.
doi_str_mv 10.1109/TSE.2023.3327583
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2901201515</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10305549</ieee_id><sourcerecordid>2901201515</sourcerecordid><originalsourceid>FETCH-LOGICAL-c287t-20d5dbb904292e56fbd69fd8e9eba60baebe2d70c5251c104d87a524d990bf9a3</originalsourceid><addsrcrecordid>eNpNkDFPwzAQRi0EEqWwMzBYYk4527kmZquqFpAqgdR2tpz4IlKVJNhOEf-eVO3AdMO977vTY-xewEQI0E-b9WIiQaqJUjLDXF2wkdBKJwolXLIRgM4TxFxfs5sQdgCAWYYjtvrwdKAmPvNZw7dN6DvyhzqQ47Ou860tP3ls-QC5uox83Vbxx3riS1vve0-B182wbF1fxrptbtlVZfeB7s5zzLbLxWb-mqzeX97ms1VSyjyLiQSHrig0pFJLwmlVuKmuXE6aCjuFwlJB0mVQokRRCkhdnlmUqdMaikpbNWaPp97hw--eQjS7tvfNcNJIDUKCQIEDBSeq9G0InirT-frL-l8jwBydmcGZOTozZ2dD5OEUqYnoH64AMdXqDz_gaEc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2901201515</pqid></control><display><type>article</type><title>Prevent: An Unsupervised Approach to Predict Software Failures in Production</title><source>IEEE Electronic Library (IEL)</source><creator>Denaro, Giovanni ; Heydarov, Rahim ; Mohebbi, Ali ; Pezze, Mauro</creator><creatorcontrib>Denaro, Giovanni ; Heydarov, Rahim ; Mohebbi, Ali ; Pezze, Mauro</creatorcontrib><description>This paper presents P revent , a fully unsupervised approach to predict and localize failures in distributed enterprise applications. Software failures in production are unavoidable. Predicting failures and locating failing components online are the first steps to proactively manage faults in production. Many techniques predict failures from anomalous combinations of system metrics with supervised, weakly supervised, and semi-supervised learning models. Supervised approaches require large sets of labelled data not commonly available in large enterprise pplications, and address failure types that can be either captured with predefined rules or observed while training supervised odels. P revent integrates the core ingredients of unsupervised approaches into a novel fully unsupervised approach to predict failures and localize failing resources. The results of experimenting with P revent on a commercially-compliant distributed cloud system indicate that P revent provides more stable, reliable and timely predictions than supervised learning approaches, without requiring the often impractical training with labeled data.</description><identifier>ISSN: 0098-5589</identifier><identifier>EISSN: 1939-3520</identifier><identifier>DOI: 10.1109/TSE.2023.3327583</identifier><identifier>CODEN: IESEDJ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Applications programs ; Failure ; Key performance indicator ; Monitoring ; Predictive models ; Production ; Semi-supervised learning ; Software ; Time measurement ; Training ; Training data</subject><ispartof>IEEE transactions on software engineering, 2023-12, Vol.49 (12), p.1-15</ispartof><rights>Copyright IEEE Computer Society 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c287t-20d5dbb904292e56fbd69fd8e9eba60baebe2d70c5251c104d87a524d990bf9a3</cites><orcidid>0000-0001-5193-7379 ; 0000-0002-4844-4351 ; 0000-0002-7566-8051 ; 0009-0002-7428-2429</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10305549$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids></links><search><creatorcontrib>Denaro, Giovanni</creatorcontrib><creatorcontrib>Heydarov, Rahim</creatorcontrib><creatorcontrib>Mohebbi, Ali</creatorcontrib><creatorcontrib>Pezze, Mauro</creatorcontrib><title>Prevent: An Unsupervised Approach to Predict Software Failures in Production</title><title>IEEE transactions on software engineering</title><addtitle>TSE</addtitle><description>This paper presents P revent , a fully unsupervised approach to predict and localize failures in distributed enterprise applications. Software failures in production are unavoidable. Predicting failures and locating failing components online are the first steps to proactively manage faults in production. Many techniques predict failures from anomalous combinations of system metrics with supervised, weakly supervised, and semi-supervised learning models. Supervised approaches require large sets of labelled data not commonly available in large enterprise pplications, and address failure types that can be either captured with predefined rules or observed while training supervised odels. P revent integrates the core ingredients of unsupervised approaches into a novel fully unsupervised approach to predict failures and localize failing resources. The results of experimenting with P revent on a commercially-compliant distributed cloud system indicate that P revent provides more stable, reliable and timely predictions than supervised learning approaches, without requiring the often impractical training with labeled data.</description><subject>Applications programs</subject><subject>Failure</subject><subject>Key performance indicator</subject><subject>Monitoring</subject><subject>Predictive models</subject><subject>Production</subject><subject>Semi-supervised learning</subject><subject>Software</subject><subject>Time measurement</subject><subject>Training</subject><subject>Training data</subject><issn>0098-5589</issn><issn>1939-3520</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><recordid>eNpNkDFPwzAQRi0EEqWwMzBYYk4527kmZquqFpAqgdR2tpz4IlKVJNhOEf-eVO3AdMO977vTY-xewEQI0E-b9WIiQaqJUjLDXF2wkdBKJwolXLIRgM4TxFxfs5sQdgCAWYYjtvrwdKAmPvNZw7dN6DvyhzqQ47Ou860tP3ls-QC5uox83Vbxx3riS1vve0-B182wbF1fxrptbtlVZfeB7s5zzLbLxWb-mqzeX97ms1VSyjyLiQSHrig0pFJLwmlVuKmuXE6aCjuFwlJB0mVQokRRCkhdnlmUqdMaikpbNWaPp97hw--eQjS7tvfNcNJIDUKCQIEDBSeq9G0InirT-frL-l8jwBydmcGZOTozZ2dD5OEUqYnoH64AMdXqDz_gaEc</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Denaro, Giovanni</creator><creator>Heydarov, Rahim</creator><creator>Mohebbi, Ali</creator><creator>Pezze, Mauro</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>JQ2</scope><scope>K9.</scope><orcidid>https://orcid.org/0000-0001-5193-7379</orcidid><orcidid>https://orcid.org/0000-0002-4844-4351</orcidid><orcidid>https://orcid.org/0000-0002-7566-8051</orcidid><orcidid>https://orcid.org/0009-0002-7428-2429</orcidid></search><sort><creationdate>20231201</creationdate><title>Prevent: An Unsupervised Approach to Predict Software Failures in Production</title><author>Denaro, Giovanni ; Heydarov, Rahim ; Mohebbi, Ali ; Pezze, Mauro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c287t-20d5dbb904292e56fbd69fd8e9eba60baebe2d70c5251c104d87a524d990bf9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applications programs</topic><topic>Failure</topic><topic>Key performance indicator</topic><topic>Monitoring</topic><topic>Predictive models</topic><topic>Production</topic><topic>Semi-supervised learning</topic><topic>Software</topic><topic>Time measurement</topic><topic>Training</topic><topic>Training data</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Denaro, Giovanni</creatorcontrib><creatorcontrib>Heydarov, Rahim</creatorcontrib><creatorcontrib>Mohebbi, Ali</creatorcontrib><creatorcontrib>Pezze, Mauro</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><jtitle>IEEE transactions on software engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Denaro, Giovanni</au><au>Heydarov, Rahim</au><au>Mohebbi, Ali</au><au>Pezze, Mauro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Prevent: An Unsupervised Approach to Predict Software Failures in Production</atitle><jtitle>IEEE transactions on software engineering</jtitle><stitle>TSE</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>49</volume><issue>12</issue><spage>1</spage><epage>15</epage><pages>1-15</pages><issn>0098-5589</issn><eissn>1939-3520</eissn><coden>IESEDJ</coden><abstract>This paper presents P revent , a fully unsupervised approach to predict and localize failures in distributed enterprise applications. Software failures in production are unavoidable. Predicting failures and locating failing components online are the first steps to proactively manage faults in production. Many techniques predict failures from anomalous combinations of system metrics with supervised, weakly supervised, and semi-supervised learning models. Supervised approaches require large sets of labelled data not commonly available in large enterprise pplications, and address failure types that can be either captured with predefined rules or observed while training supervised odels. P revent integrates the core ingredients of unsupervised approaches into a novel fully unsupervised approach to predict failures and localize failing resources. The results of experimenting with P revent on a commercially-compliant distributed cloud system indicate that P revent provides more stable, reliable and timely predictions than supervised learning approaches, without requiring the often impractical training with labeled data.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TSE.2023.3327583</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-5193-7379</orcidid><orcidid>https://orcid.org/0000-0002-4844-4351</orcidid><orcidid>https://orcid.org/0000-0002-7566-8051</orcidid><orcidid>https://orcid.org/0009-0002-7428-2429</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0098-5589
ispartof IEEE transactions on software engineering, 2023-12, Vol.49 (12), p.1-15
issn 0098-5589
1939-3520
language eng
recordid cdi_proquest_journals_2901201515
source IEEE Electronic Library (IEL)
subjects Applications programs
Failure
Key performance indicator
Monitoring
Predictive models
Production
Semi-supervised learning
Software
Time measurement
Training
Training data
title Prevent: An Unsupervised Approach to Predict Software Failures in Production
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A07%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Prevent:%20An%20Unsupervised%20Approach%20to%20Predict%20Software%20Failures%20in%20Production&rft.jtitle=IEEE%20transactions%20on%20software%20engineering&rft.au=Denaro,%20Giovanni&rft.date=2023-12-01&rft.volume=49&rft.issue=12&rft.spage=1&rft.epage=15&rft.pages=1-15&rft.issn=0098-5589&rft.eissn=1939-3520&rft.coden=IESEDJ&rft_id=info:doi/10.1109/TSE.2023.3327583&rft_dat=%3Cproquest_cross%3E2901201515%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2901201515&rft_id=info:pmid/&rft_ieee_id=10305549&rfr_iscdi=true