Risk measures based on weak optimal transport
In this paper, we study convex risk measures with weak optimal transport penalties. In a first step, we show that these risk measures allow for an explicit representation via a nonlinear transform of the loss function. In a second step, we discuss computational aspects related to the nonlinear trans...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Kupper, Michael Nendel, Max Sgarabottolo, Alessandro |
description | In this paper, we study convex risk measures with weak optimal transport penalties. In a first step, we show that these risk measures allow for an explicit representation via a nonlinear transform of the loss function. In a second step, we discuss computational aspects related to the nonlinear transform as well as approximations of the risk measures using, for example, neural networks. Our setup comprises a variety of examples, such as classical optimal transport penalties, parametric families of models, uncertainty on path spaces, moment constrains, and martingale constraints. In a last step, we show how to use the theoretical results for the numerical computation of worst-case losses in an insurance context and no-arbitrage prices of European contingent claims after quoted maturities in a model-free setting. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2900773190</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900773190</sourcerecordid><originalsourceid>FETCH-proquest_journals_29007731903</originalsourceid><addsrcrecordid>eNqNyk0KwjAQQOEgCBbtHQZcB6YTa-xaFNfivkQcoX9JzKR4fV14AFdv8b2FKsiYSh92RCtVivSISHtLdW0Kpa-dDDCxkzmxwN0JPyB4eLMbIMTcTW6EnJyXGFLeqOXTjcLlr2u1PZ9ux4uOKbxmltz2YU7-Sy01iNaaqkHz3_UBy64yIw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900773190</pqid></control><display><type>article</type><title>Risk measures based on weak optimal transport</title><source>Free E- Journals</source><creator>Kupper, Michael ; Nendel, Max ; Sgarabottolo, Alessandro</creator><creatorcontrib>Kupper, Michael ; Nendel, Max ; Sgarabottolo, Alessandro</creatorcontrib><description>In this paper, we study convex risk measures with weak optimal transport penalties. In a first step, we show that these risk measures allow for an explicit representation via a nonlinear transform of the loss function. In a second step, we discuss computational aspects related to the nonlinear transform as well as approximations of the risk measures using, for example, neural networks. Our setup comprises a variety of examples, such as classical optimal transport penalties, parametric families of models, uncertainty on path spaces, moment constrains, and martingale constraints. In a last step, we show how to use the theoretical results for the numerical computation of worst-case losses in an insurance context and no-arbitrage prices of European contingent claims after quoted maturities in a model-free setting.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Martingales ; Neural networks ; Numerical analysis ; Risk</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Kupper, Michael</creatorcontrib><creatorcontrib>Nendel, Max</creatorcontrib><creatorcontrib>Sgarabottolo, Alessandro</creatorcontrib><title>Risk measures based on weak optimal transport</title><title>arXiv.org</title><description>In this paper, we study convex risk measures with weak optimal transport penalties. In a first step, we show that these risk measures allow for an explicit representation via a nonlinear transform of the loss function. In a second step, we discuss computational aspects related to the nonlinear transform as well as approximations of the risk measures using, for example, neural networks. Our setup comprises a variety of examples, such as classical optimal transport penalties, parametric families of models, uncertainty on path spaces, moment constrains, and martingale constraints. In a last step, we show how to use the theoretical results for the numerical computation of worst-case losses in an insurance context and no-arbitrage prices of European contingent claims after quoted maturities in a model-free setting.</description><subject>Martingales</subject><subject>Neural networks</subject><subject>Numerical analysis</subject><subject>Risk</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyk0KwjAQQOEgCBbtHQZcB6YTa-xaFNfivkQcoX9JzKR4fV14AFdv8b2FKsiYSh92RCtVivSISHtLdW0Kpa-dDDCxkzmxwN0JPyB4eLMbIMTcTW6EnJyXGFLeqOXTjcLlr2u1PZ9ux4uOKbxmltz2YU7-Sy01iNaaqkHz3_UBy64yIw</recordid><startdate>20231210</startdate><enddate>20231210</enddate><creator>Kupper, Michael</creator><creator>Nendel, Max</creator><creator>Sgarabottolo, Alessandro</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231210</creationdate><title>Risk measures based on weak optimal transport</title><author>Kupper, Michael ; Nendel, Max ; Sgarabottolo, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29007731903</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Martingales</topic><topic>Neural networks</topic><topic>Numerical analysis</topic><topic>Risk</topic><toplevel>online_resources</toplevel><creatorcontrib>Kupper, Michael</creatorcontrib><creatorcontrib>Nendel, Max</creatorcontrib><creatorcontrib>Sgarabottolo, Alessandro</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kupper, Michael</au><au>Nendel, Max</au><au>Sgarabottolo, Alessandro</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Risk measures based on weak optimal transport</atitle><jtitle>arXiv.org</jtitle><date>2023-12-10</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In this paper, we study convex risk measures with weak optimal transport penalties. In a first step, we show that these risk measures allow for an explicit representation via a nonlinear transform of the loss function. In a second step, we discuss computational aspects related to the nonlinear transform as well as approximations of the risk measures using, for example, neural networks. Our setup comprises a variety of examples, such as classical optimal transport penalties, parametric families of models, uncertainty on path spaces, moment constrains, and martingale constraints. In a last step, we show how to use the theoretical results for the numerical computation of worst-case losses in an insurance context and no-arbitrage prices of European contingent claims after quoted maturities in a model-free setting.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2900773190 |
source | Free E- Journals |
subjects | Martingales Neural networks Numerical analysis Risk |
title | Risk measures based on weak optimal transport |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T10%3A11%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Risk%20measures%20based%20on%20weak%20optimal%20transport&rft.jtitle=arXiv.org&rft.au=Kupper,%20Michael&rft.date=2023-12-10&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2900773190%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900773190&rft_id=info:pmid/&rfr_iscdi=true |