Transition Path Sampling with Boltzmann Generator-based MCMC Moves

Sampling all possible transition paths between two 3D states of a molecular system has various applications ranging from catalyst design to drug discovery. Current approaches to sample transition paths use Markov chain Monte Carlo and rely on time-intensive molecular dynamics simulations to find new...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-12
Hauptverfasser: Plainer, Michael, Stärk, Hannes, Bunne, Charlotte, Günnemann, Stephan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Plainer, Michael
Stärk, Hannes
Bunne, Charlotte
Günnemann, Stephan
description Sampling all possible transition paths between two 3D states of a molecular system has various applications ranging from catalyst design to drug discovery. Current approaches to sample transition paths use Markov chain Monte Carlo and rely on time-intensive molecular dynamics simulations to find new paths. Our approach operates in the latent space of a normalizing flow that maps from the molecule's Boltzmann distribution to a Gaussian, where we propose new paths without requiring molecular simulations. Using alanine dipeptide, we explore Metropolis-Hastings acceptance criteria in the latent space for exact sampling and investigate different latent proposal mechanisms.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2900746986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900746986</sourcerecordid><originalsourceid>FETCH-proquest_journals_29007469863</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3CLguxKTfbYufTUHQfXli1JT2pealCp7eLjyAq2GYmbFAKrWJ8ljKBQuJWiGETDOZJCpg5dkBkvHGIj-Cf_AT9ENn8M7fZrLSdv7TAyLfa9QOvHXRBUhfeV3VFa_tS9OKzW_QkQ5_XLL1bnuuDtHg7HPU5JvWjg6n1MhCiCxOizxV_11fltc5bg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900746986</pqid></control><display><type>article</type><title>Transition Path Sampling with Boltzmann Generator-based MCMC Moves</title><source>Free E- Journals</source><creator>Plainer, Michael ; Stärk, Hannes ; Bunne, Charlotte ; Günnemann, Stephan</creator><creatorcontrib>Plainer, Michael ; Stärk, Hannes ; Bunne, Charlotte ; Günnemann, Stephan</creatorcontrib><description>Sampling all possible transition paths between two 3D states of a molecular system has various applications ranging from catalyst design to drug discovery. Current approaches to sample transition paths use Markov chain Monte Carlo and rely on time-intensive molecular dynamics simulations to find new paths. Our approach operates in the latent space of a normalizing flow that maps from the molecule's Boltzmann distribution to a Gaussian, where we propose new paths without requiring molecular simulations. Using alanine dipeptide, we explore Metropolis-Hastings acceptance criteria in the latent space for exact sampling and investigate different latent proposal mechanisms.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Acceptance criteria ; Alanine ; Boltzmann distribution ; Flow mapping ; Markov chains ; Molecular dynamics ; Normal distribution ; Normalizing (statistics) ; Sampling</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Plainer, Michael</creatorcontrib><creatorcontrib>Stärk, Hannes</creatorcontrib><creatorcontrib>Bunne, Charlotte</creatorcontrib><creatorcontrib>Günnemann, Stephan</creatorcontrib><title>Transition Path Sampling with Boltzmann Generator-based MCMC Moves</title><title>arXiv.org</title><description>Sampling all possible transition paths between two 3D states of a molecular system has various applications ranging from catalyst design to drug discovery. Current approaches to sample transition paths use Markov chain Monte Carlo and rely on time-intensive molecular dynamics simulations to find new paths. Our approach operates in the latent space of a normalizing flow that maps from the molecule's Boltzmann distribution to a Gaussian, where we propose new paths without requiring molecular simulations. Using alanine dipeptide, we explore Metropolis-Hastings acceptance criteria in the latent space for exact sampling and investigate different latent proposal mechanisms.</description><subject>Acceptance criteria</subject><subject>Alanine</subject><subject>Boltzmann distribution</subject><subject>Flow mapping</subject><subject>Markov chains</subject><subject>Molecular dynamics</subject><subject>Normal distribution</subject><subject>Normalizing (statistics)</subject><subject>Sampling</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3CLguxKTfbYufTUHQfXli1JT2pealCp7eLjyAq2GYmbFAKrWJ8ljKBQuJWiGETDOZJCpg5dkBkvHGIj-Cf_AT9ENn8M7fZrLSdv7TAyLfa9QOvHXRBUhfeV3VFa_tS9OKzW_QkQ5_XLL1bnuuDtHg7HPU5JvWjg6n1MhCiCxOizxV_11fltc5bg</recordid><startdate>20231208</startdate><enddate>20231208</enddate><creator>Plainer, Michael</creator><creator>Stärk, Hannes</creator><creator>Bunne, Charlotte</creator><creator>Günnemann, Stephan</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231208</creationdate><title>Transition Path Sampling with Boltzmann Generator-based MCMC Moves</title><author>Plainer, Michael ; Stärk, Hannes ; Bunne, Charlotte ; Günnemann, Stephan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29007469863</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acceptance criteria</topic><topic>Alanine</topic><topic>Boltzmann distribution</topic><topic>Flow mapping</topic><topic>Markov chains</topic><topic>Molecular dynamics</topic><topic>Normal distribution</topic><topic>Normalizing (statistics)</topic><topic>Sampling</topic><toplevel>online_resources</toplevel><creatorcontrib>Plainer, Michael</creatorcontrib><creatorcontrib>Stärk, Hannes</creatorcontrib><creatorcontrib>Bunne, Charlotte</creatorcontrib><creatorcontrib>Günnemann, Stephan</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Plainer, Michael</au><au>Stärk, Hannes</au><au>Bunne, Charlotte</au><au>Günnemann, Stephan</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Transition Path Sampling with Boltzmann Generator-based MCMC Moves</atitle><jtitle>arXiv.org</jtitle><date>2023-12-08</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Sampling all possible transition paths between two 3D states of a molecular system has various applications ranging from catalyst design to drug discovery. Current approaches to sample transition paths use Markov chain Monte Carlo and rely on time-intensive molecular dynamics simulations to find new paths. Our approach operates in the latent space of a normalizing flow that maps from the molecule's Boltzmann distribution to a Gaussian, where we propose new paths without requiring molecular simulations. Using alanine dipeptide, we explore Metropolis-Hastings acceptance criteria in the latent space for exact sampling and investigate different latent proposal mechanisms.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2023-12
issn 2331-8422
language eng
recordid cdi_proquest_journals_2900746986
source Free E- Journals
subjects Acceptance criteria
Alanine
Boltzmann distribution
Flow mapping
Markov chains
Molecular dynamics
Normal distribution
Normalizing (statistics)
Sampling
title Transition Path Sampling with Boltzmann Generator-based MCMC Moves
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T09%3A35%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Transition%20Path%20Sampling%20with%20Boltzmann%20Generator-based%20MCMC%20Moves&rft.jtitle=arXiv.org&rft.au=Plainer,%20Michael&rft.date=2023-12-08&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2900746986%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900746986&rft_id=info:pmid/&rfr_iscdi=true