Loop group factorization method for the magnetic and thermostatic nonabelian ray transforms
We study the injectivity of the matrix attenuated and nonabelian ray transforms on compact surfaces with boundary for nontrapping \(\lambda\)-geodesic flows and the general linear group of invertible complex matrices. We generalize the loop group factorization argument of Paternain and Salo to reduc...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Jathar, Shubham R Kar, Manas Railo, Jesse |
description | We study the injectivity of the matrix attenuated and nonabelian ray transforms on compact surfaces with boundary for nontrapping \(\lambda\)-geodesic flows and the general linear group of invertible complex matrices. We generalize the loop group factorization argument of Paternain and Salo to reduce to the setting of the unitary group when \(\lambda\) has the vertical Fourier degree at most \(2\). This covers the magnetic and thermostatic flows as special cases. Our article settles the general injectivity question of the nonabelian ray transform for simple magnetic flows in combination with an earlier result by Ainsworth. We stress that the injectivity question in the unitary case for simple Gaussian thermostats remains open. Furthermore, we observe that the loop group argument does not apply when \(\lambda\) has higher Fourier modes. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2900746984</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900746984</sourcerecordid><originalsourceid>FETCH-proquest_journals_29007469843</originalsourceid><addsrcrecordid>eNqNi70KwjAURoMgWLTvcMG5ENP_WRQHRzcHubZpm9Lk1iQd9OltwQdwOnDO961YIOL4EBWJEBsWOtdzzkWWizSNA3a_Eo3QWppGaLDyZNUHvSIDWvqOamjIgu8kaGyN9KoCNPUirCbncRGGDD7loNCAxTd4i8bNL-12bN3g4GT445btz6fb8RKNll6TdP7R02TNnB6i5DxPsrJI4v9WXwaXRDM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900746984</pqid></control><display><type>article</type><title>Loop group factorization method for the magnetic and thermostatic nonabelian ray transforms</title><source>Free E- Journals</source><creator>Jathar, Shubham R ; Kar, Manas ; Railo, Jesse</creator><creatorcontrib>Jathar, Shubham R ; Kar, Manas ; Railo, Jesse</creatorcontrib><description>We study the injectivity of the matrix attenuated and nonabelian ray transforms on compact surfaces with boundary for nontrapping \(\lambda\)-geodesic flows and the general linear group of invertible complex matrices. We generalize the loop group factorization argument of Paternain and Salo to reduce to the setting of the unitary group when \(\lambda\) has the vertical Fourier degree at most \(2\). This covers the magnetic and thermostatic flows as special cases. Our article settles the general injectivity question of the nonabelian ray transform for simple magnetic flows in combination with an earlier result by Ainsworth. We stress that the injectivity question in the unitary case for simple Gaussian thermostats remains open. Furthermore, we observe that the loop group argument does not apply when \(\lambda\) has higher Fourier modes.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Factorization ; Mathematical analysis ; Questions</subject><ispartof>arXiv.org, 2024-12</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Jathar, Shubham R</creatorcontrib><creatorcontrib>Kar, Manas</creatorcontrib><creatorcontrib>Railo, Jesse</creatorcontrib><title>Loop group factorization method for the magnetic and thermostatic nonabelian ray transforms</title><title>arXiv.org</title><description>We study the injectivity of the matrix attenuated and nonabelian ray transforms on compact surfaces with boundary for nontrapping \(\lambda\)-geodesic flows and the general linear group of invertible complex matrices. We generalize the loop group factorization argument of Paternain and Salo to reduce to the setting of the unitary group when \(\lambda\) has the vertical Fourier degree at most \(2\). This covers the magnetic and thermostatic flows as special cases. Our article settles the general injectivity question of the nonabelian ray transform for simple magnetic flows in combination with an earlier result by Ainsworth. We stress that the injectivity question in the unitary case for simple Gaussian thermostats remains open. Furthermore, we observe that the loop group argument does not apply when \(\lambda\) has higher Fourier modes.</description><subject>Factorization</subject><subject>Mathematical analysis</subject><subject>Questions</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNi70KwjAURoMgWLTvcMG5ENP_WRQHRzcHubZpm9Lk1iQd9OltwQdwOnDO961YIOL4EBWJEBsWOtdzzkWWizSNA3a_Eo3QWppGaLDyZNUHvSIDWvqOamjIgu8kaGyN9KoCNPUirCbncRGGDD7loNCAxTd4i8bNL-12bN3g4GT445btz6fb8RKNll6TdP7R02TNnB6i5DxPsrJI4v9WXwaXRDM</recordid><startdate>20241202</startdate><enddate>20241202</enddate><creator>Jathar, Shubham R</creator><creator>Kar, Manas</creator><creator>Railo, Jesse</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20241202</creationdate><title>Loop group factorization method for the magnetic and thermostatic nonabelian ray transforms</title><author>Jathar, Shubham R ; Kar, Manas ; Railo, Jesse</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29007469843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Factorization</topic><topic>Mathematical analysis</topic><topic>Questions</topic><toplevel>online_resources</toplevel><creatorcontrib>Jathar, Shubham R</creatorcontrib><creatorcontrib>Kar, Manas</creatorcontrib><creatorcontrib>Railo, Jesse</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jathar, Shubham R</au><au>Kar, Manas</au><au>Railo, Jesse</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Loop group factorization method for the magnetic and thermostatic nonabelian ray transforms</atitle><jtitle>arXiv.org</jtitle><date>2024-12-02</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We study the injectivity of the matrix attenuated and nonabelian ray transforms on compact surfaces with boundary for nontrapping \(\lambda\)-geodesic flows and the general linear group of invertible complex matrices. We generalize the loop group factorization argument of Paternain and Salo to reduce to the setting of the unitary group when \(\lambda\) has the vertical Fourier degree at most \(2\). This covers the magnetic and thermostatic flows as special cases. Our article settles the general injectivity question of the nonabelian ray transform for simple magnetic flows in combination with an earlier result by Ainsworth. We stress that the injectivity question in the unitary case for simple Gaussian thermostats remains open. Furthermore, we observe that the loop group argument does not apply when \(\lambda\) has higher Fourier modes.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2900746984 |
source | Free E- Journals |
subjects | Factorization Mathematical analysis Questions |
title | Loop group factorization method for the magnetic and thermostatic nonabelian ray transforms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T09%3A09%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Loop%20group%20factorization%20method%20for%20the%20magnetic%20and%20thermostatic%20nonabelian%20ray%20transforms&rft.jtitle=arXiv.org&rft.au=Jathar,%20Shubham%20R&rft.date=2024-12-02&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2900746984%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900746984&rft_id=info:pmid/&rfr_iscdi=true |