Defect detection of solar photovoltaic modules using inceptionV3 Deep CNN

Recent studies proved that to identify the automatic detection of defects in the solar photovoltaic (PV) modules are more reliable than the manual defect detection technique. Now a days, the manufacturers more trust on the automatic defect detection techniques instead of manual defect detection. The...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroQuantology 2022-01, Vol.20 (5), p.3554
Hauptverfasser: Verma, Sunanda, Taluja, Harish Kumar, Chaudhary, Priyanka, Anuradha
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Recent studies proved that to identify the automatic detection of defects in the solar photovoltaic (PV) modules are more reliable than the manual defect detection technique. Now a days, the manufacturers more trust on the automatic defect detection techniques instead of manual defect detection. The Automatic defect detection is a fast and trustedway to classify the defects from the image dataset
ISSN:1303-5150
DOI:10.14704/nq.2022.20.5.NQ22653