Defect detection of solar photovoltaic modules using inceptionV3 Deep CNN
Recent studies proved that to identify the automatic detection of defects in the solar photovoltaic (PV) modules are more reliable than the manual defect detection technique. Now a days, the manufacturers more trust on the automatic defect detection techniques instead of manual defect detection. The...
Gespeichert in:
Veröffentlicht in: | NeuroQuantology 2022-01, Vol.20 (5), p.3554 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Recent studies proved that to identify the automatic detection of defects in the solar photovoltaic (PV) modules are more reliable than the manual defect detection technique. Now a days, the manufacturers more trust on the automatic defect detection techniques instead of manual defect detection. The Automatic defect detection is a fast and trustedway to classify the defects from the image dataset |
---|---|
ISSN: | 1303-5150 |
DOI: | 10.14704/nq.2022.20.5.NQ22653 |