Machine learning techniques to predict solar radiation
The purpose of the research is to develop several machine learning models to predict UV-B radiation and determine the best algorithm, whose type of research is applied and experimental design of preexperimental type with a quantitative approach. The methodology used for the development was the KDD(K...
Gespeichert in:
Veröffentlicht in: | NeuroQuantology 2022-01, Vol.20 (6), p.7467 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 6 |
container_start_page | 7467 |
container_title | NeuroQuantology |
container_volume | 20 |
creator | Giancarlo Sánchez Atuncar Francisco Hilario Falcon |
description | The purpose of the research is to develop several machine learning models to predict UV-B radiation and determine the best algorithm, whose type of research is applied and experimental design of preexperimental type with a quantitative approach. The methodology used for the development was the KDD(Knowledge Discovery in Database) methodology which consists of the following stages: |
doi_str_mv | 10.14704/nq.2022.20.6.NQ22747 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2900734595</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900734595</sourcerecordid><originalsourceid>FETCH-proquest_journals_29007345953</originalsourceid><addsrcrecordid>eNqNi8sKwjAUBYMgWB-fIARcN968GroWxY2C4L6ENtqUkrRJ-v9W8APcnFnMHIT2FAgVCsTRjYQBY_OQgtwfjCmhFiijHHguqYQVWsfYAUgFZZGh4qbr1jqDe6ODs-6Nk6lbZ8fJRJw8HoJpbJ1w9L0OOOjG6mS926LlS_fR7H7coMPl_Dxd8yH47zVVnZ-Cm1XFSgDFhSwl_6_6AFHDO5M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900734595</pqid></control><display><type>article</type><title>Machine learning techniques to predict solar radiation</title><source>EZB-FREE-00999 freely available EZB journals</source><creator>Giancarlo Sánchez Atuncar ; Francisco Hilario Falcon</creator><creatorcontrib>Giancarlo Sánchez Atuncar ; Francisco Hilario Falcon</creatorcontrib><description>The purpose of the research is to develop several machine learning models to predict UV-B radiation and determine the best algorithm, whose type of research is applied and experimental design of preexperimental type with a quantitative approach. The methodology used for the development was the KDD(Knowledge Discovery in Database) methodology which consists of the following stages:</description><identifier>EISSN: 1303-5150</identifier><identifier>DOI: 10.14704/nq.2022.20.6.NQ22747</identifier><language>eng</language><publisher>Bornova Izmir: NeuroQuantology</publisher><subject>Accuracy ; Algorithms ; Artificial intelligence ; Cancer ; Decision trees ; Design of experiments ; Immune system ; Machine learning ; Neural networks ; Regression analysis ; Solar radiation ; Sun ; Sunburn & sun tanning ; Ultraviolet radiation</subject><ispartof>NeuroQuantology, 2022-01, Vol.20 (6), p.7467</ispartof><rights>Copyright NeuroQuantology 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Giancarlo Sánchez Atuncar</creatorcontrib><creatorcontrib>Francisco Hilario Falcon</creatorcontrib><title>Machine learning techniques to predict solar radiation</title><title>NeuroQuantology</title><description>The purpose of the research is to develop several machine learning models to predict UV-B radiation and determine the best algorithm, whose type of research is applied and experimental design of preexperimental type with a quantitative approach. The methodology used for the development was the KDD(Knowledge Discovery in Database) methodology which consists of the following stages:</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Cancer</subject><subject>Decision trees</subject><subject>Design of experiments</subject><subject>Immune system</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Regression analysis</subject><subject>Solar radiation</subject><subject>Sun</subject><subject>Sunburn & sun tanning</subject><subject>Ultraviolet radiation</subject><issn>1303-5150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNi8sKwjAUBYMgWB-fIARcN968GroWxY2C4L6ENtqUkrRJ-v9W8APcnFnMHIT2FAgVCsTRjYQBY_OQgtwfjCmhFiijHHguqYQVWsfYAUgFZZGh4qbr1jqDe6ODs-6Nk6lbZ8fJRJw8HoJpbJ1w9L0OOOjG6mS926LlS_fR7H7coMPl_Dxd8yH47zVVnZ-Cm1XFSgDFhSwl_6_6AFHDO5M</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Giancarlo Sánchez Atuncar</creator><creator>Francisco Hilario Falcon</creator><general>NeuroQuantology</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>Machine learning techniques to predict solar radiation</title><author>Giancarlo Sánchez Atuncar ; Francisco Hilario Falcon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29007345953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Cancer</topic><topic>Decision trees</topic><topic>Design of experiments</topic><topic>Immune system</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Regression analysis</topic><topic>Solar radiation</topic><topic>Sun</topic><topic>Sunburn & sun tanning</topic><topic>Ultraviolet radiation</topic><toplevel>online_resources</toplevel><creatorcontrib>Giancarlo Sánchez Atuncar</creatorcontrib><creatorcontrib>Francisco Hilario Falcon</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Psychology Database (ProQuest)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>NeuroQuantology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giancarlo Sánchez Atuncar</au><au>Francisco Hilario Falcon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine learning techniques to predict solar radiation</atitle><jtitle>NeuroQuantology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>20</volume><issue>6</issue><spage>7467</spage><pages>7467-</pages><eissn>1303-5150</eissn><abstract>The purpose of the research is to develop several machine learning models to predict UV-B radiation and determine the best algorithm, whose type of research is applied and experimental design of preexperimental type with a quantitative approach. The methodology used for the development was the KDD(Knowledge Discovery in Database) methodology which consists of the following stages:</abstract><cop>Bornova Izmir</cop><pub>NeuroQuantology</pub><doi>10.14704/nq.2022.20.6.NQ22747</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1303-5150 |
ispartof | NeuroQuantology, 2022-01, Vol.20 (6), p.7467 |
issn | 1303-5150 |
language | eng |
recordid | cdi_proquest_journals_2900734595 |
source | EZB-FREE-00999 freely available EZB journals |
subjects | Accuracy Algorithms Artificial intelligence Cancer Decision trees Design of experiments Immune system Machine learning Neural networks Regression analysis Solar radiation Sun Sunburn & sun tanning Ultraviolet radiation |
title | Machine learning techniques to predict solar radiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T04%3A40%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20learning%20techniques%20to%20predict%20solar%20radiation&rft.jtitle=NeuroQuantology&rft.au=Giancarlo%20S%C3%A1nchez%20Atuncar&rft.date=2022-01-01&rft.volume=20&rft.issue=6&rft.spage=7467&rft.pages=7467-&rft.eissn=1303-5150&rft_id=info:doi/10.14704/nq.2022.20.6.NQ22747&rft_dat=%3Cproquest%3E2900734595%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900734595&rft_id=info:pmid/&rfr_iscdi=true |