Detection of Bacillus spp. Bacteria using Combination ofFaster R-CNN and ResNet-50
Bacteria play an important role in human life since they influence all aspects of life, from vital processes within the human body to the production of medical drugs and vaccines, as well as food production. As this stage is considered one of the basic stages in the diagnosis process, the Bacilli sh...
Gespeichert in:
Veröffentlicht in: | NeuroQuantology 2022-01, Vol.20 (8), p.8858 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 8858 |
container_title | NeuroQuantology |
container_volume | 20 |
creator | Badr, Ahmed Adnan Thekra Haider Ali Abbas Mohammed Fadhel AboKsour |
description | Bacteria play an important role in human life since they influence all aspects of life, from vital processes within the human body to the production of medical drugs and vaccines, as well as food production. As this stage is considered one of the basic stages in the diagnosis process, the Bacilli shape is one of the basic forms of bacteria that microbiologists use medical microscopes to diagnose. The purpose of this Article is to develop a bacilliform diagnosis system that employs a pre-trained ResNet-50 algorithm as a feature extraction layer to train the Faster R-CNN detector model.DIBaS (Digital Images of Bacteria Species) dataset, is a public dataset containing 33 different types of bacteria used in training and validating the system. The proposed system achieved 98.99% mini-batch accuracy and 99.10% validation accuracy. |
doi_str_mv | 10.14704/nq.2022.20.8.NQ44908 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2900710706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900710706</sourcerecordid><originalsourceid>FETCH-proquest_journals_29007107063</originalsourceid><addsrcrecordid>eNqNissKgkAYRocgyC6PEAy0dvrHu9usaCUk7WWyMUZsRv3H98_AB2jzHT7OIWTPgfEghuCoe-aB503DEpbfgyCFZEEc7oPvhjyEFVkjNgBhDGnkkOIsraysMpqamp5Epdp2RIpdx37PykEJOqLSb5qZz1NpMbdXgZOkhZvlORX6RQuJubRuCFuyrEWLcjdzQw7XyyO7ud1g-lGiLRszDnpSpZcCxBxiiPz_qi8qQUO6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900710706</pqid></control><display><type>article</type><title>Detection of Bacillus spp. Bacteria using Combination ofFaster R-CNN and ResNet-50</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Badr, Ahmed Adnan ; Thekra Haider Ali Abbas ; Mohammed Fadhel AboKsour</creator><creatorcontrib>Badr, Ahmed Adnan ; Thekra Haider Ali Abbas ; Mohammed Fadhel AboKsour</creatorcontrib><description>Bacteria play an important role in human life since they influence all aspects of life, from vital processes within the human body to the production of medical drugs and vaccines, as well as food production. As this stage is considered one of the basic stages in the diagnosis process, the Bacilli shape is one of the basic forms of bacteria that microbiologists use medical microscopes to diagnose. The purpose of this Article is to develop a bacilliform diagnosis system that employs a pre-trained ResNet-50 algorithm as a feature extraction layer to train the Faster R-CNN detector model.DIBaS (Digital Images of Bacteria Species) dataset, is a public dataset containing 33 different types of bacteria used in training and validating the system. The proposed system achieved 98.99% mini-batch accuracy and 99.10% validation accuracy.</description><identifier>EISSN: 1303-5150</identifier><identifier>DOI: 10.14704/nq.2022.20.8.NQ44908</identifier><language>eng</language><publisher>Bornova Izmir: NeuroQuantology</publisher><subject>Accuracy ; Algorithms ; Bacteria ; Data mining ; Datasets ; Deep learning ; Diagnosis ; Digital imaging ; E coli ; Feature extraction ; Machine learning ; Neural networks ; Spectrum analysis ; Support vector machines</subject><ispartof>NeuroQuantology, 2022-01, Vol.20 (8), p.8858</ispartof><rights>Copyright NeuroQuantology 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Badr, Ahmed Adnan</creatorcontrib><creatorcontrib>Thekra Haider Ali Abbas</creatorcontrib><creatorcontrib>Mohammed Fadhel AboKsour</creatorcontrib><title>Detection of Bacillus spp. Bacteria using Combination ofFaster R-CNN and ResNet-50</title><title>NeuroQuantology</title><description>Bacteria play an important role in human life since they influence all aspects of life, from vital processes within the human body to the production of medical drugs and vaccines, as well as food production. As this stage is considered one of the basic stages in the diagnosis process, the Bacilli shape is one of the basic forms of bacteria that microbiologists use medical microscopes to diagnose. The purpose of this Article is to develop a bacilliform diagnosis system that employs a pre-trained ResNet-50 algorithm as a feature extraction layer to train the Faster R-CNN detector model.DIBaS (Digital Images of Bacteria Species) dataset, is a public dataset containing 33 different types of bacteria used in training and validating the system. The proposed system achieved 98.99% mini-batch accuracy and 99.10% validation accuracy.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Bacteria</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Digital imaging</subject><subject>E coli</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Spectrum analysis</subject><subject>Support vector machines</subject><issn>1303-5150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKgkAYRocgyC6PEAy0dvrHu9usaCUk7WWyMUZsRv3H98_AB2jzHT7OIWTPgfEghuCoe-aB503DEpbfgyCFZEEc7oPvhjyEFVkjNgBhDGnkkOIsraysMpqamp5Epdp2RIpdx37PykEJOqLSb5qZz1NpMbdXgZOkhZvlORX6RQuJubRuCFuyrEWLcjdzQw7XyyO7ud1g-lGiLRszDnpSpZcCxBxiiPz_qi8qQUO6</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Badr, Ahmed Adnan</creator><creator>Thekra Haider Ali Abbas</creator><creator>Mohammed Fadhel AboKsour</creator><general>NeuroQuantology</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>Detection of Bacillus spp. Bacteria using Combination ofFaster R-CNN and ResNet-50</title><author>Badr, Ahmed Adnan ; Thekra Haider Ali Abbas ; Mohammed Fadhel AboKsour</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29007107063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Bacteria</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Digital imaging</topic><topic>E coli</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Spectrum analysis</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Badr, Ahmed Adnan</creatorcontrib><creatorcontrib>Thekra Haider Ali Abbas</creatorcontrib><creatorcontrib>Mohammed Fadhel AboKsour</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Psychology</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>NeuroQuantology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badr, Ahmed Adnan</au><au>Thekra Haider Ali Abbas</au><au>Mohammed Fadhel AboKsour</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Bacillus spp. Bacteria using Combination ofFaster R-CNN and ResNet-50</atitle><jtitle>NeuroQuantology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>20</volume><issue>8</issue><spage>8858</spage><pages>8858-</pages><eissn>1303-5150</eissn><abstract>Bacteria play an important role in human life since they influence all aspects of life, from vital processes within the human body to the production of medical drugs and vaccines, as well as food production. As this stage is considered one of the basic stages in the diagnosis process, the Bacilli shape is one of the basic forms of bacteria that microbiologists use medical microscopes to diagnose. The purpose of this Article is to develop a bacilliform diagnosis system that employs a pre-trained ResNet-50 algorithm as a feature extraction layer to train the Faster R-CNN detector model.DIBaS (Digital Images of Bacteria Species) dataset, is a public dataset containing 33 different types of bacteria used in training and validating the system. The proposed system achieved 98.99% mini-batch accuracy and 99.10% validation accuracy.</abstract><cop>Bornova Izmir</cop><pub>NeuroQuantology</pub><doi>10.14704/nq.2022.20.8.NQ44908</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1303-5150 |
ispartof | NeuroQuantology, 2022-01, Vol.20 (8), p.8858 |
issn | 1303-5150 |
language | eng |
recordid | cdi_proquest_journals_2900710706 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Accuracy Algorithms Bacteria Data mining Datasets Deep learning Diagnosis Digital imaging E coli Feature extraction Machine learning Neural networks Spectrum analysis Support vector machines |
title | Detection of Bacillus spp. Bacteria using Combination ofFaster R-CNN and ResNet-50 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Bacillus%20spp.%20Bacteria%20using%20Combination%20ofFaster%20R-CNN%20and%20ResNet-50&rft.jtitle=NeuroQuantology&rft.au=Badr,%20Ahmed%20Adnan&rft.date=2022-01-01&rft.volume=20&rft.issue=8&rft.spage=8858&rft.pages=8858-&rft.eissn=1303-5150&rft_id=info:doi/10.14704/nq.2022.20.8.NQ44908&rft_dat=%3Cproquest%3E2900710706%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900710706&rft_id=info:pmid/&rfr_iscdi=true |