Detection of Bacillus spp. Bacteria using Combination ofFaster R-CNN and ResNet-50

Bacteria play an important role in human life since they influence all aspects of life, from vital processes within the human body to the production of medical drugs and vaccines, as well as food production. As this stage is considered one of the basic stages in the diagnosis process, the Bacilli sh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroQuantology 2022-01, Vol.20 (8), p.8858
Hauptverfasser: Badr, Ahmed Adnan, Thekra Haider Ali Abbas, Mohammed Fadhel AboKsour
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 8858
container_title NeuroQuantology
container_volume 20
creator Badr, Ahmed Adnan
Thekra Haider Ali Abbas
Mohammed Fadhel AboKsour
description Bacteria play an important role in human life since they influence all aspects of life, from vital processes within the human body to the production of medical drugs and vaccines, as well as food production. As this stage is considered one of the basic stages in the diagnosis process, the Bacilli shape is one of the basic forms of bacteria that microbiologists use medical microscopes to diagnose. The purpose of this Article is to develop a bacilliform diagnosis system that employs a pre-trained ResNet-50 algorithm as a feature extraction layer to train the Faster R-CNN detector model.DIBaS (Digital Images of Bacteria Species) dataset, is a public dataset containing 33 different types of bacteria used in training and validating the system. The proposed system achieved 98.99% mini-batch accuracy and 99.10% validation accuracy.
doi_str_mv 10.14704/nq.2022.20.8.NQ44908
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2900710706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900710706</sourcerecordid><originalsourceid>FETCH-proquest_journals_29007107063</originalsourceid><addsrcrecordid>eNqNissKgkAYRocgyC6PEAy0dvrHu9usaCUk7WWyMUZsRv3H98_AB2jzHT7OIWTPgfEghuCoe-aB503DEpbfgyCFZEEc7oPvhjyEFVkjNgBhDGnkkOIsraysMpqamp5Epdp2RIpdx37PykEJOqLSb5qZz1NpMbdXgZOkhZvlORX6RQuJubRuCFuyrEWLcjdzQw7XyyO7ud1g-lGiLRszDnpSpZcCxBxiiPz_qi8qQUO6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900710706</pqid></control><display><type>article</type><title>Detection of Bacillus spp. Bacteria using Combination ofFaster R-CNN and ResNet-50</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Badr, Ahmed Adnan ; Thekra Haider Ali Abbas ; Mohammed Fadhel AboKsour</creator><creatorcontrib>Badr, Ahmed Adnan ; Thekra Haider Ali Abbas ; Mohammed Fadhel AboKsour</creatorcontrib><description>Bacteria play an important role in human life since they influence all aspects of life, from vital processes within the human body to the production of medical drugs and vaccines, as well as food production. As this stage is considered one of the basic stages in the diagnosis process, the Bacilli shape is one of the basic forms of bacteria that microbiologists use medical microscopes to diagnose. The purpose of this Article is to develop a bacilliform diagnosis system that employs a pre-trained ResNet-50 algorithm as a feature extraction layer to train the Faster R-CNN detector model.DIBaS (Digital Images of Bacteria Species) dataset, is a public dataset containing 33 different types of bacteria used in training and validating the system. The proposed system achieved 98.99% mini-batch accuracy and 99.10% validation accuracy.</description><identifier>EISSN: 1303-5150</identifier><identifier>DOI: 10.14704/nq.2022.20.8.NQ44908</identifier><language>eng</language><publisher>Bornova Izmir: NeuroQuantology</publisher><subject>Accuracy ; Algorithms ; Bacteria ; Data mining ; Datasets ; Deep learning ; Diagnosis ; Digital imaging ; E coli ; Feature extraction ; Machine learning ; Neural networks ; Spectrum analysis ; Support vector machines</subject><ispartof>NeuroQuantology, 2022-01, Vol.20 (8), p.8858</ispartof><rights>Copyright NeuroQuantology 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Badr, Ahmed Adnan</creatorcontrib><creatorcontrib>Thekra Haider Ali Abbas</creatorcontrib><creatorcontrib>Mohammed Fadhel AboKsour</creatorcontrib><title>Detection of Bacillus spp. Bacteria using Combination ofFaster R-CNN and ResNet-50</title><title>NeuroQuantology</title><description>Bacteria play an important role in human life since they influence all aspects of life, from vital processes within the human body to the production of medical drugs and vaccines, as well as food production. As this stage is considered one of the basic stages in the diagnosis process, the Bacilli shape is one of the basic forms of bacteria that microbiologists use medical microscopes to diagnose. The purpose of this Article is to develop a bacilliform diagnosis system that employs a pre-trained ResNet-50 algorithm as a feature extraction layer to train the Faster R-CNN detector model.DIBaS (Digital Images of Bacteria Species) dataset, is a public dataset containing 33 different types of bacteria used in training and validating the system. The proposed system achieved 98.99% mini-batch accuracy and 99.10% validation accuracy.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Bacteria</subject><subject>Data mining</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Diagnosis</subject><subject>Digital imaging</subject><subject>E coli</subject><subject>Feature extraction</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Spectrum analysis</subject><subject>Support vector machines</subject><issn>1303-5150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNissKgkAYRocgyC6PEAy0dvrHu9usaCUk7WWyMUZsRv3H98_AB2jzHT7OIWTPgfEghuCoe-aB503DEpbfgyCFZEEc7oPvhjyEFVkjNgBhDGnkkOIsraysMpqamp5Epdp2RIpdx37PykEJOqLSb5qZz1NpMbdXgZOkhZvlORX6RQuJubRuCFuyrEWLcjdzQw7XyyO7ud1g-lGiLRszDnpSpZcCxBxiiPz_qi8qQUO6</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Badr, Ahmed Adnan</creator><creator>Thekra Haider Ali Abbas</creator><creator>Mohammed Fadhel AboKsour</creator><general>NeuroQuantology</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>Detection of Bacillus spp. Bacteria using Combination ofFaster R-CNN and ResNet-50</title><author>Badr, Ahmed Adnan ; Thekra Haider Ali Abbas ; Mohammed Fadhel AboKsour</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29007107063</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Bacteria</topic><topic>Data mining</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Diagnosis</topic><topic>Digital imaging</topic><topic>E coli</topic><topic>Feature extraction</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Spectrum analysis</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Badr, Ahmed Adnan</creatorcontrib><creatorcontrib>Thekra Haider Ali Abbas</creatorcontrib><creatorcontrib>Mohammed Fadhel AboKsour</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Psychology</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>NeuroQuantology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Badr, Ahmed Adnan</au><au>Thekra Haider Ali Abbas</au><au>Mohammed Fadhel AboKsour</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of Bacillus spp. Bacteria using Combination ofFaster R-CNN and ResNet-50</atitle><jtitle>NeuroQuantology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>20</volume><issue>8</issue><spage>8858</spage><pages>8858-</pages><eissn>1303-5150</eissn><abstract>Bacteria play an important role in human life since they influence all aspects of life, from vital processes within the human body to the production of medical drugs and vaccines, as well as food production. As this stage is considered one of the basic stages in the diagnosis process, the Bacilli shape is one of the basic forms of bacteria that microbiologists use medical microscopes to diagnose. The purpose of this Article is to develop a bacilliform diagnosis system that employs a pre-trained ResNet-50 algorithm as a feature extraction layer to train the Faster R-CNN detector model.DIBaS (Digital Images of Bacteria Species) dataset, is a public dataset containing 33 different types of bacteria used in training and validating the system. The proposed system achieved 98.99% mini-batch accuracy and 99.10% validation accuracy.</abstract><cop>Bornova Izmir</cop><pub>NeuroQuantology</pub><doi>10.14704/nq.2022.20.8.NQ44908</doi></addata></record>
fulltext fulltext
identifier EISSN: 1303-5150
ispartof NeuroQuantology, 2022-01, Vol.20 (8), p.8858
issn 1303-5150
language eng
recordid cdi_proquest_journals_2900710706
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Algorithms
Bacteria
Data mining
Datasets
Deep learning
Diagnosis
Digital imaging
E coli
Feature extraction
Machine learning
Neural networks
Spectrum analysis
Support vector machines
title Detection of Bacillus spp. Bacteria using Combination ofFaster R-CNN and ResNet-50
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T06%3A39%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20Bacillus%20spp.%20Bacteria%20using%20Combination%20ofFaster%20R-CNN%20and%20ResNet-50&rft.jtitle=NeuroQuantology&rft.au=Badr,%20Ahmed%20Adnan&rft.date=2022-01-01&rft.volume=20&rft.issue=8&rft.spage=8858&rft.pages=8858-&rft.eissn=1303-5150&rft_id=info:doi/10.14704/nq.2022.20.8.NQ44908&rft_dat=%3Cproquest%3E2900710706%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900710706&rft_id=info:pmid/&rfr_iscdi=true