Ant Colony Optimization for Joint Channel Estimation and Impulsive Noise Mitigation Method in OFDM Systems
The impulsive noise can deteriorate sharply the performance of orthogonal frequency division multiplexing (OFDM) systems. In this paper, we propose a novel joint channel impulse response estimation and impulsive noise mitigation algorithm based on compressed sensing theory. In this algorithm, both t...
Gespeichert in:
Veröffentlicht in: | NeuroQuantology 2022-01, Vol.20 (8), p.8424 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | 8424 |
container_title | NeuroQuantology |
container_volume | 20 |
creator | Devi, N P Sarada Parnapalle Reshma |
description | The impulsive noise can deteriorate sharply the performance of orthogonal frequency division multiplexing (OFDM) systems. In this paper, we propose a novel joint channel impulse response estimation and impulsive noise mitigation algorithm based on compressed sensing theory. In this algorithm, both the channel impulse response and the impulsive noise are treated as a joint sparse vector. Then, the sparse Bayesian learning framework is adopted to jointly estimate the channel impulse response, the impulsive noise, and the data symbols, in which the data symbols are regarded as unknown parameters. In this article, we propose an ant colony optimization (ACO) algorithm for large MIMO detection analysis. We also discuss the robustness of the proposed ant colony algorithm for better enhancement and quality of analysis, the proposed algorithm utilizes all subcarriers without any a priori information of the channel and impulsive noise. The simulation results show that the proposed algorithm achieves significant performance improvement on the channel estimation and bit error rate performance. |
doi_str_mv | 10.14704/nq.2022.20.8.NQ44865 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2900708138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900708138</sourcerecordid><originalsourceid>FETCH-proquest_journals_29007081383</originalsourceid><addsrcrecordid>eNqNys1qwlAQhuFDoVD7cwnCQNfGOfkxcVmsUgtRiu4l4FEnJDMxc1KwV98UvYBuvnfxfMYMLQY2TjEe8zkIMQz7CbJg9RXH2SS5MwMbYTRKbIIP5lG1RExSnE4GpnxjDzOphC-wbjzV9FN4EoaDtPAp9KengtlVMNeer1jwHpZ101VK3w5WQuogJ0_HK-fOn2QPxLBevOewuah3tT6b-0NRqXu59cm8Lubb2ceoaeXcOfW7UrqWe9qFU8QUMxtl0f9ev0_7TfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900708138</pqid></control><display><type>article</type><title>Ant Colony Optimization for Joint Channel Estimation and Impulsive Noise Mitigation Method in OFDM Systems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Devi, N P Sarada ; Parnapalle Reshma</creator><creatorcontrib>Devi, N P Sarada ; Parnapalle Reshma</creatorcontrib><description>The impulsive noise can deteriorate sharply the performance of orthogonal frequency division multiplexing (OFDM) systems. In this paper, we propose a novel joint channel impulse response estimation and impulsive noise mitigation algorithm based on compressed sensing theory. In this algorithm, both the channel impulse response and the impulsive noise are treated as a joint sparse vector. Then, the sparse Bayesian learning framework is adopted to jointly estimate the channel impulse response, the impulsive noise, and the data symbols, in which the data symbols are regarded as unknown parameters. In this article, we propose an ant colony optimization (ACO) algorithm for large MIMO detection analysis. We also discuss the robustness of the proposed ant colony algorithm for better enhancement and quality of analysis, the proposed algorithm utilizes all subcarriers without any a priori information of the channel and impulsive noise. The simulation results show that the proposed algorithm achieves significant performance improvement on the channel estimation and bit error rate performance.</description><identifier>EISSN: 1303-5150</identifier><identifier>DOI: 10.14704/nq.2022.20.8.NQ44865</identifier><language>eng</language><publisher>Bornova Izmir: NeuroQuantology</publisher><subject>Algorithms ; Ant colony optimization ; Bit error rate ; Impulse response ; Machine learning ; Orthogonal Frequency Division Multiplexing ; Symbols</subject><ispartof>NeuroQuantology, 2022-01, Vol.20 (8), p.8424</ispartof><rights>Copyright NeuroQuantology 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Devi, N P Sarada</creatorcontrib><creatorcontrib>Parnapalle Reshma</creatorcontrib><title>Ant Colony Optimization for Joint Channel Estimation and Impulsive Noise Mitigation Method in OFDM Systems</title><title>NeuroQuantology</title><description>The impulsive noise can deteriorate sharply the performance of orthogonal frequency division multiplexing (OFDM) systems. In this paper, we propose a novel joint channel impulse response estimation and impulsive noise mitigation algorithm based on compressed sensing theory. In this algorithm, both the channel impulse response and the impulsive noise are treated as a joint sparse vector. Then, the sparse Bayesian learning framework is adopted to jointly estimate the channel impulse response, the impulsive noise, and the data symbols, in which the data symbols are regarded as unknown parameters. In this article, we propose an ant colony optimization (ACO) algorithm for large MIMO detection analysis. We also discuss the robustness of the proposed ant colony algorithm for better enhancement and quality of analysis, the proposed algorithm utilizes all subcarriers without any a priori information of the channel and impulsive noise. The simulation results show that the proposed algorithm achieves significant performance improvement on the channel estimation and bit error rate performance.</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Bit error rate</subject><subject>Impulse response</subject><subject>Machine learning</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Symbols</subject><issn>1303-5150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNys1qwlAQhuFDoVD7cwnCQNfGOfkxcVmsUgtRiu4l4FEnJDMxc1KwV98UvYBuvnfxfMYMLQY2TjEe8zkIMQz7CbJg9RXH2SS5MwMbYTRKbIIP5lG1RExSnE4GpnxjDzOphC-wbjzV9FN4EoaDtPAp9KengtlVMNeer1jwHpZ101VK3w5WQuogJ0_HK-fOn2QPxLBevOewuah3tT6b-0NRqXu59cm8Lubb2ceoaeXcOfW7UrqWe9qFU8QUMxtl0f9ev0_7TfM</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Devi, N P Sarada</creator><creator>Parnapalle Reshma</creator><general>NeuroQuantology</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>Ant Colony Optimization for Joint Channel Estimation and Impulsive Noise Mitigation Method in OFDM Systems</title><author>Devi, N P Sarada ; Parnapalle Reshma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29007081383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Bit error rate</topic><topic>Impulse response</topic><topic>Machine learning</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Symbols</topic><toplevel>online_resources</toplevel><creatorcontrib>Devi, N P Sarada</creatorcontrib><creatorcontrib>Parnapalle Reshma</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Psychology</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>NeuroQuantology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devi, N P Sarada</au><au>Parnapalle Reshma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ant Colony Optimization for Joint Channel Estimation and Impulsive Noise Mitigation Method in OFDM Systems</atitle><jtitle>NeuroQuantology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>20</volume><issue>8</issue><spage>8424</spage><pages>8424-</pages><eissn>1303-5150</eissn><abstract>The impulsive noise can deteriorate sharply the performance of orthogonal frequency division multiplexing (OFDM) systems. In this paper, we propose a novel joint channel impulse response estimation and impulsive noise mitigation algorithm based on compressed sensing theory. In this algorithm, both the channel impulse response and the impulsive noise are treated as a joint sparse vector. Then, the sparse Bayesian learning framework is adopted to jointly estimate the channel impulse response, the impulsive noise, and the data symbols, in which the data symbols are regarded as unknown parameters. In this article, we propose an ant colony optimization (ACO) algorithm for large MIMO detection analysis. We also discuss the robustness of the proposed ant colony algorithm for better enhancement and quality of analysis, the proposed algorithm utilizes all subcarriers without any a priori information of the channel and impulsive noise. The simulation results show that the proposed algorithm achieves significant performance improvement on the channel estimation and bit error rate performance.</abstract><cop>Bornova Izmir</cop><pub>NeuroQuantology</pub><doi>10.14704/nq.2022.20.8.NQ44865</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1303-5150 |
ispartof | NeuroQuantology, 2022-01, Vol.20 (8), p.8424 |
issn | 1303-5150 |
language | eng |
recordid | cdi_proquest_journals_2900708138 |
source | Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Algorithms Ant colony optimization Bit error rate Impulse response Machine learning Orthogonal Frequency Division Multiplexing Symbols |
title | Ant Colony Optimization for Joint Channel Estimation and Impulsive Noise Mitigation Method in OFDM Systems |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ant%20Colony%20Optimization%20for%20Joint%20Channel%20Estimation%20and%20Impulsive%20Noise%20Mitigation%20Method%20in%20OFDM%20Systems&rft.jtitle=NeuroQuantology&rft.au=Devi,%20N%20P%20Sarada&rft.date=2022-01-01&rft.volume=20&rft.issue=8&rft.spage=8424&rft.pages=8424-&rft.eissn=1303-5150&rft_id=info:doi/10.14704/nq.2022.20.8.NQ44865&rft_dat=%3Cproquest%3E2900708138%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900708138&rft_id=info:pmid/&rfr_iscdi=true |