Ant Colony Optimization for Joint Channel Estimation and Impulsive Noise Mitigation Method in OFDM Systems

The impulsive noise can deteriorate sharply the performance of orthogonal frequency division multiplexing (OFDM) systems. In this paper, we propose a novel joint channel impulse response estimation and impulsive noise mitigation algorithm based on compressed sensing theory. In this algorithm, both t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroQuantology 2022-01, Vol.20 (8), p.8424
Hauptverfasser: Devi, N P Sarada, Parnapalle Reshma
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page 8424
container_title NeuroQuantology
container_volume 20
creator Devi, N P Sarada
Parnapalle Reshma
description The impulsive noise can deteriorate sharply the performance of orthogonal frequency division multiplexing (OFDM) systems. In this paper, we propose a novel joint channel impulse response estimation and impulsive noise mitigation algorithm based on compressed sensing theory. In this algorithm, both the channel impulse response and the impulsive noise are treated as a joint sparse vector. Then, the sparse Bayesian learning framework is adopted to jointly estimate the channel impulse response, the impulsive noise, and the data symbols, in which the data symbols are regarded as unknown parameters. In this article, we propose an ant colony optimization (ACO) algorithm for large MIMO detection analysis. We also discuss the robustness of the proposed ant colony algorithm for better enhancement and quality of analysis, the proposed algorithm utilizes all subcarriers without any a priori information of the channel and impulsive noise. The simulation results show that the proposed algorithm achieves significant performance improvement on the channel estimation and bit error rate performance.
doi_str_mv 10.14704/nq.2022.20.8.NQ44865
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2900708138</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900708138</sourcerecordid><originalsourceid>FETCH-proquest_journals_29007081383</originalsourceid><addsrcrecordid>eNqNys1qwlAQhuFDoVD7cwnCQNfGOfkxcVmsUgtRiu4l4FEnJDMxc1KwV98UvYBuvnfxfMYMLQY2TjEe8zkIMQz7CbJg9RXH2SS5MwMbYTRKbIIP5lG1RExSnE4GpnxjDzOphC-wbjzV9FN4EoaDtPAp9KengtlVMNeer1jwHpZ101VK3w5WQuogJ0_HK-fOn2QPxLBevOewuah3tT6b-0NRqXu59cm8Lubb2ceoaeXcOfW7UrqWe9qFU8QUMxtl0f9ev0_7TfM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900708138</pqid></control><display><type>article</type><title>Ant Colony Optimization for Joint Channel Estimation and Impulsive Noise Mitigation Method in OFDM Systems</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Devi, N P Sarada ; Parnapalle Reshma</creator><creatorcontrib>Devi, N P Sarada ; Parnapalle Reshma</creatorcontrib><description>The impulsive noise can deteriorate sharply the performance of orthogonal frequency division multiplexing (OFDM) systems. In this paper, we propose a novel joint channel impulse response estimation and impulsive noise mitigation algorithm based on compressed sensing theory. In this algorithm, both the channel impulse response and the impulsive noise are treated as a joint sparse vector. Then, the sparse Bayesian learning framework is adopted to jointly estimate the channel impulse response, the impulsive noise, and the data symbols, in which the data symbols are regarded as unknown parameters. In this article, we propose an ant colony optimization (ACO) algorithm for large MIMO detection analysis. We also discuss the robustness of the proposed ant colony algorithm for better enhancement and quality of analysis, the proposed algorithm utilizes all subcarriers without any a priori information of the channel and impulsive noise. The simulation results show that the proposed algorithm achieves significant performance improvement on the channel estimation and bit error rate performance.</description><identifier>EISSN: 1303-5150</identifier><identifier>DOI: 10.14704/nq.2022.20.8.NQ44865</identifier><language>eng</language><publisher>Bornova Izmir: NeuroQuantology</publisher><subject>Algorithms ; Ant colony optimization ; Bit error rate ; Impulse response ; Machine learning ; Orthogonal Frequency Division Multiplexing ; Symbols</subject><ispartof>NeuroQuantology, 2022-01, Vol.20 (8), p.8424</ispartof><rights>Copyright NeuroQuantology 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Devi, N P Sarada</creatorcontrib><creatorcontrib>Parnapalle Reshma</creatorcontrib><title>Ant Colony Optimization for Joint Channel Estimation and Impulsive Noise Mitigation Method in OFDM Systems</title><title>NeuroQuantology</title><description>The impulsive noise can deteriorate sharply the performance of orthogonal frequency division multiplexing (OFDM) systems. In this paper, we propose a novel joint channel impulse response estimation and impulsive noise mitigation algorithm based on compressed sensing theory. In this algorithm, both the channel impulse response and the impulsive noise are treated as a joint sparse vector. Then, the sparse Bayesian learning framework is adopted to jointly estimate the channel impulse response, the impulsive noise, and the data symbols, in which the data symbols are regarded as unknown parameters. In this article, we propose an ant colony optimization (ACO) algorithm for large MIMO detection analysis. We also discuss the robustness of the proposed ant colony algorithm for better enhancement and quality of analysis, the proposed algorithm utilizes all subcarriers without any a priori information of the channel and impulsive noise. The simulation results show that the proposed algorithm achieves significant performance improvement on the channel estimation and bit error rate performance.</description><subject>Algorithms</subject><subject>Ant colony optimization</subject><subject>Bit error rate</subject><subject>Impulse response</subject><subject>Machine learning</subject><subject>Orthogonal Frequency Division Multiplexing</subject><subject>Symbols</subject><issn>1303-5150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNys1qwlAQhuFDoVD7cwnCQNfGOfkxcVmsUgtRiu4l4FEnJDMxc1KwV98UvYBuvnfxfMYMLQY2TjEe8zkIMQz7CbJg9RXH2SS5MwMbYTRKbIIP5lG1RExSnE4GpnxjDzOphC-wbjzV9FN4EoaDtPAp9KengtlVMNeer1jwHpZ101VK3w5WQuogJ0_HK-fOn2QPxLBevOewuah3tT6b-0NRqXu59cm8Lubb2ceoaeXcOfW7UrqWe9qFU8QUMxtl0f9ev0_7TfM</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>Devi, N P Sarada</creator><creator>Parnapalle Reshma</creator><general>NeuroQuantology</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>Ant Colony Optimization for Joint Channel Estimation and Impulsive Noise Mitigation Method in OFDM Systems</title><author>Devi, N P Sarada ; Parnapalle Reshma</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29007081383</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Ant colony optimization</topic><topic>Bit error rate</topic><topic>Impulse response</topic><topic>Machine learning</topic><topic>Orthogonal Frequency Division Multiplexing</topic><topic>Symbols</topic><toplevel>online_resources</toplevel><creatorcontrib>Devi, N P Sarada</creatorcontrib><creatorcontrib>Parnapalle Reshma</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Psychology</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>NeuroQuantology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Devi, N P Sarada</au><au>Parnapalle Reshma</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ant Colony Optimization for Joint Channel Estimation and Impulsive Noise Mitigation Method in OFDM Systems</atitle><jtitle>NeuroQuantology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>20</volume><issue>8</issue><spage>8424</spage><pages>8424-</pages><eissn>1303-5150</eissn><abstract>The impulsive noise can deteriorate sharply the performance of orthogonal frequency division multiplexing (OFDM) systems. In this paper, we propose a novel joint channel impulse response estimation and impulsive noise mitigation algorithm based on compressed sensing theory. In this algorithm, both the channel impulse response and the impulsive noise are treated as a joint sparse vector. Then, the sparse Bayesian learning framework is adopted to jointly estimate the channel impulse response, the impulsive noise, and the data symbols, in which the data symbols are regarded as unknown parameters. In this article, we propose an ant colony optimization (ACO) algorithm for large MIMO detection analysis. We also discuss the robustness of the proposed ant colony algorithm for better enhancement and quality of analysis, the proposed algorithm utilizes all subcarriers without any a priori information of the channel and impulsive noise. The simulation results show that the proposed algorithm achieves significant performance improvement on the channel estimation and bit error rate performance.</abstract><cop>Bornova Izmir</cop><pub>NeuroQuantology</pub><doi>10.14704/nq.2022.20.8.NQ44865</doi></addata></record>
fulltext fulltext
identifier EISSN: 1303-5150
ispartof NeuroQuantology, 2022-01, Vol.20 (8), p.8424
issn 1303-5150
language eng
recordid cdi_proquest_journals_2900708138
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Algorithms
Ant colony optimization
Bit error rate
Impulse response
Machine learning
Orthogonal Frequency Division Multiplexing
Symbols
title Ant Colony Optimization for Joint Channel Estimation and Impulsive Noise Mitigation Method in OFDM Systems
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T12%3A55%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ant%20Colony%20Optimization%20for%20Joint%20Channel%20Estimation%20and%20Impulsive%20Noise%20Mitigation%20Method%20in%20OFDM%20Systems&rft.jtitle=NeuroQuantology&rft.au=Devi,%20N%20P%20Sarada&rft.date=2022-01-01&rft.volume=20&rft.issue=8&rft.spage=8424&rft.pages=8424-&rft.eissn=1303-5150&rft_id=info:doi/10.14704/nq.2022.20.8.NQ44865&rft_dat=%3Cproquest%3E2900708138%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900708138&rft_id=info:pmid/&rfr_iscdi=true