Wireless Energy Transfer for Internet of Everything: Energy-Efficient Resource Allocation in Digital Twins

The objective of this research is to improve Wireless Energy Transfer (WET) reliability in the Internet of Things (IoT), this research aims to enhance the lifespan of wireless equipment and encourage ecologically responsible communica-tion. The technology of of WET based on IoT ecosystem Digital Twi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroQuantology 2022-01, Vol.20 (9), p.3289
Hauptverfasser: K Raja Sravan Kumar, Gopikrishnan, S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 9
container_start_page 3289
container_title NeuroQuantology
container_volume 20
creator K Raja Sravan Kumar
Gopikrishnan, S
description The objective of this research is to improve Wireless Energy Transfer (WET) reliability in the Internet of Things (IoT), this research aims to enhance the lifespan of wireless equipment and encourage ecologically responsible communica-tion. The technology of of WET based on IoT ecosystem Digital Twins (DTs) shows in what manner to maximize the energy effectiveness of massive MIMO systems. Because of MIMO’s ability to produce such narrow beams, other users will experience less interference. The BCD approach and fractional planning are used to maximize this MIMO system’s energy efficiency. The algorithm proposed throughput is best when the highest transmit power is 19dBm, according to simulation data
doi_str_mv 10.14704/nq.2022.20.9.NQ44379
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2900701956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900701956</sourcerecordid><originalsourceid>FETCH-proquest_journals_29007019563</originalsourceid><addsrcrecordid>eNqNjM1Kw0AURoeCYNU-gnDBddI7-WkYd6KRdiMogS5LCHfSG4Y7dmaq9O3Nog_g5juLc_iUetSY66rBai2nvMCimCc3-cdnVZWNWailLrHMal3jrbqLcUKsGzSbpZr2HMhRjNAKhfECXeglWgpgfYCdJApCCbyF9ofCJR1Zxudrm7XW8sAkCb4o-nMYCF6c80Of2AuwwBuPnHoH3S9LfFA3tneRVlfeq6f3tnvdZt_Bn84U02GaP2RWh8IgNqhNvSn_V_0BkX1Oeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900701956</pqid></control><display><type>article</type><title>Wireless Energy Transfer for Internet of Everything: Energy-Efficient Resource Allocation in Digital Twins</title><source>EZB Electronic Journals Library</source><creator>K Raja Sravan Kumar ; Gopikrishnan, S</creator><creatorcontrib>K Raja Sravan Kumar ; Gopikrishnan, S</creatorcontrib><description>The objective of this research is to improve Wireless Energy Transfer (WET) reliability in the Internet of Things (IoT), this research aims to enhance the lifespan of wireless equipment and encourage ecologically responsible communica-tion. The technology of of WET based on IoT ecosystem Digital Twins (DTs) shows in what manner to maximize the energy effectiveness of massive MIMO systems. Because of MIMO’s ability to produce such narrow beams, other users will experience less interference. The BCD approach and fractional planning are used to maximize this MIMO system’s energy efficiency. The algorithm proposed throughput is best when the highest transmit power is 19dBm, according to simulation data</description><identifier>EISSN: 1303-5150</identifier><identifier>DOI: 10.14704/nq.2022.20.9.NQ44379</identifier><language>eng</language><publisher>Bornova Izmir: NeuroQuantology</publisher><subject>Algorithms ; Antennas ; Artificial intelligence ; Batteries ; Big Data ; Computer science ; Digital twins ; Energy consumption ; Energy efficiency ; Internet of Things ; Optimization ; Resource allocation ; Sensors ; Smart cities ; System effectiveness ; Wireless communications</subject><ispartof>NeuroQuantology, 2022-01, Vol.20 (9), p.3289</ispartof><rights>Copyright NeuroQuantology 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>K Raja Sravan Kumar</creatorcontrib><creatorcontrib>Gopikrishnan, S</creatorcontrib><title>Wireless Energy Transfer for Internet of Everything: Energy-Efficient Resource Allocation in Digital Twins</title><title>NeuroQuantology</title><description>The objective of this research is to improve Wireless Energy Transfer (WET) reliability in the Internet of Things (IoT), this research aims to enhance the lifespan of wireless equipment and encourage ecologically responsible communica-tion. The technology of of WET based on IoT ecosystem Digital Twins (DTs) shows in what manner to maximize the energy effectiveness of massive MIMO systems. Because of MIMO’s ability to produce such narrow beams, other users will experience less interference. The BCD approach and fractional planning are used to maximize this MIMO system’s energy efficiency. The algorithm proposed throughput is best when the highest transmit power is 19dBm, according to simulation data</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Artificial intelligence</subject><subject>Batteries</subject><subject>Big Data</subject><subject>Computer science</subject><subject>Digital twins</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Internet of Things</subject><subject>Optimization</subject><subject>Resource allocation</subject><subject>Sensors</subject><subject>Smart cities</subject><subject>System effectiveness</subject><subject>Wireless communications</subject><issn>1303-5150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjM1Kw0AURoeCYNU-gnDBddI7-WkYd6KRdiMogS5LCHfSG4Y7dmaq9O3Nog_g5juLc_iUetSY66rBai2nvMCimCc3-cdnVZWNWailLrHMal3jrbqLcUKsGzSbpZr2HMhRjNAKhfECXeglWgpgfYCdJApCCbyF9ofCJR1Zxudrm7XW8sAkCb4o-nMYCF6c80Of2AuwwBuPnHoH3S9LfFA3tneRVlfeq6f3tnvdZt_Bn84U02GaP2RWh8IgNqhNvSn_V_0BkX1Oeg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>K Raja Sravan Kumar</creator><creator>Gopikrishnan, S</creator><general>NeuroQuantology</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>Wireless Energy Transfer for Internet of Everything: Energy-Efficient Resource Allocation in Digital Twins</title><author>K Raja Sravan Kumar ; Gopikrishnan, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29007019563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Artificial intelligence</topic><topic>Batteries</topic><topic>Big Data</topic><topic>Computer science</topic><topic>Digital twins</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Internet of Things</topic><topic>Optimization</topic><topic>Resource allocation</topic><topic>Sensors</topic><topic>Smart cities</topic><topic>System effectiveness</topic><topic>Wireless communications</topic><toplevel>online_resources</toplevel><creatorcontrib>K Raja Sravan Kumar</creatorcontrib><creatorcontrib>Gopikrishnan, S</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>ProQuest Psychology</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>NeuroQuantology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>K Raja Sravan Kumar</au><au>Gopikrishnan, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wireless Energy Transfer for Internet of Everything: Energy-Efficient Resource Allocation in Digital Twins</atitle><jtitle>NeuroQuantology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>20</volume><issue>9</issue><spage>3289</spage><pages>3289-</pages><eissn>1303-5150</eissn><abstract>The objective of this research is to improve Wireless Energy Transfer (WET) reliability in the Internet of Things (IoT), this research aims to enhance the lifespan of wireless equipment and encourage ecologically responsible communica-tion. The technology of of WET based on IoT ecosystem Digital Twins (DTs) shows in what manner to maximize the energy effectiveness of massive MIMO systems. Because of MIMO’s ability to produce such narrow beams, other users will experience less interference. The BCD approach and fractional planning are used to maximize this MIMO system’s energy efficiency. The algorithm proposed throughput is best when the highest transmit power is 19dBm, according to simulation data</abstract><cop>Bornova Izmir</cop><pub>NeuroQuantology</pub><doi>10.14704/nq.2022.20.9.NQ44379</doi></addata></record>
fulltext fulltext
identifier EISSN: 1303-5150
ispartof NeuroQuantology, 2022-01, Vol.20 (9), p.3289
issn 1303-5150
language eng
recordid cdi_proquest_journals_2900701956
source EZB Electronic Journals Library
subjects Algorithms
Antennas
Artificial intelligence
Batteries
Big Data
Computer science
Digital twins
Energy consumption
Energy efficiency
Internet of Things
Optimization
Resource allocation
Sensors
Smart cities
System effectiveness
Wireless communications
title Wireless Energy Transfer for Internet of Everything: Energy-Efficient Resource Allocation in Digital Twins
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A53%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wireless%20Energy%20Transfer%20for%20Internet%20of%20Everything:%20Energy-Efficient%20Resource%20Allocation%20in%20Digital%20Twins&rft.jtitle=NeuroQuantology&rft.au=K%20Raja%20Sravan%20Kumar&rft.date=2022-01-01&rft.volume=20&rft.issue=9&rft.spage=3289&rft.pages=3289-&rft.eissn=1303-5150&rft_id=info:doi/10.14704/nq.2022.20.9.NQ44379&rft_dat=%3Cproquest%3E2900701956%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900701956&rft_id=info:pmid/&rfr_iscdi=true