Wireless Energy Transfer for Internet of Everything: Energy-Efficient Resource Allocation in Digital Twins
The objective of this research is to improve Wireless Energy Transfer (WET) reliability in the Internet of Things (IoT), this research aims to enhance the lifespan of wireless equipment and encourage ecologically responsible communica-tion. The technology of of WET based on IoT ecosystem Digital Twi...
Gespeichert in:
Veröffentlicht in: | NeuroQuantology 2022-01, Vol.20 (9), p.3289 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 9 |
container_start_page | 3289 |
container_title | NeuroQuantology |
container_volume | 20 |
creator | K Raja Sravan Kumar Gopikrishnan, S |
description | The objective of this research is to improve Wireless Energy Transfer (WET) reliability in the Internet of Things (IoT), this research aims to enhance the lifespan of wireless equipment and encourage ecologically responsible communica-tion. The technology of of WET based on IoT ecosystem Digital Twins (DTs) shows in what manner to maximize the energy effectiveness of massive MIMO systems. Because of MIMO’s ability to produce such narrow beams, other users will experience less interference. The BCD approach and fractional planning are used to maximize this MIMO system’s energy efficiency. The algorithm proposed throughput is best when the highest transmit power is 19dBm, according to simulation data |
doi_str_mv | 10.14704/nq.2022.20.9.NQ44379 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2900701956</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900701956</sourcerecordid><originalsourceid>FETCH-proquest_journals_29007019563</originalsourceid><addsrcrecordid>eNqNjM1Kw0AURoeCYNU-gnDBddI7-WkYd6KRdiMogS5LCHfSG4Y7dmaq9O3Nog_g5juLc_iUetSY66rBai2nvMCimCc3-cdnVZWNWailLrHMal3jrbqLcUKsGzSbpZr2HMhRjNAKhfECXeglWgpgfYCdJApCCbyF9ofCJR1Zxudrm7XW8sAkCb4o-nMYCF6c80Of2AuwwBuPnHoH3S9LfFA3tneRVlfeq6f3tnvdZt_Bn84U02GaP2RWh8IgNqhNvSn_V_0BkX1Oeg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900701956</pqid></control><display><type>article</type><title>Wireless Energy Transfer for Internet of Everything: Energy-Efficient Resource Allocation in Digital Twins</title><source>EZB Electronic Journals Library</source><creator>K Raja Sravan Kumar ; Gopikrishnan, S</creator><creatorcontrib>K Raja Sravan Kumar ; Gopikrishnan, S</creatorcontrib><description>The objective of this research is to improve Wireless Energy Transfer (WET) reliability in the Internet of Things (IoT), this research aims to enhance the lifespan of wireless equipment and encourage ecologically responsible communica-tion. The technology of of WET based on IoT ecosystem Digital Twins (DTs) shows in what manner to maximize the energy effectiveness of massive MIMO systems. Because of MIMO’s ability to produce such narrow beams, other users will experience less interference. The BCD approach and fractional planning are used to maximize this MIMO system’s energy efficiency. The algorithm proposed throughput is best when the highest transmit power is 19dBm, according to simulation data</description><identifier>EISSN: 1303-5150</identifier><identifier>DOI: 10.14704/nq.2022.20.9.NQ44379</identifier><language>eng</language><publisher>Bornova Izmir: NeuroQuantology</publisher><subject>Algorithms ; Antennas ; Artificial intelligence ; Batteries ; Big Data ; Computer science ; Digital twins ; Energy consumption ; Energy efficiency ; Internet of Things ; Optimization ; Resource allocation ; Sensors ; Smart cities ; System effectiveness ; Wireless communications</subject><ispartof>NeuroQuantology, 2022-01, Vol.20 (9), p.3289</ispartof><rights>Copyright NeuroQuantology 2022</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>K Raja Sravan Kumar</creatorcontrib><creatorcontrib>Gopikrishnan, S</creatorcontrib><title>Wireless Energy Transfer for Internet of Everything: Energy-Efficient Resource Allocation in Digital Twins</title><title>NeuroQuantology</title><description>The objective of this research is to improve Wireless Energy Transfer (WET) reliability in the Internet of Things (IoT), this research aims to enhance the lifespan of wireless equipment and encourage ecologically responsible communica-tion. The technology of of WET based on IoT ecosystem Digital Twins (DTs) shows in what manner to maximize the energy effectiveness of massive MIMO systems. Because of MIMO’s ability to produce such narrow beams, other users will experience less interference. The BCD approach and fractional planning are used to maximize this MIMO system’s energy efficiency. The algorithm proposed throughput is best when the highest transmit power is 19dBm, according to simulation data</description><subject>Algorithms</subject><subject>Antennas</subject><subject>Artificial intelligence</subject><subject>Batteries</subject><subject>Big Data</subject><subject>Computer science</subject><subject>Digital twins</subject><subject>Energy consumption</subject><subject>Energy efficiency</subject><subject>Internet of Things</subject><subject>Optimization</subject><subject>Resource allocation</subject><subject>Sensors</subject><subject>Smart cities</subject><subject>System effectiveness</subject><subject>Wireless communications</subject><issn>1303-5150</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjM1Kw0AURoeCYNU-gnDBddI7-WkYd6KRdiMogS5LCHfSG4Y7dmaq9O3Nog_g5juLc_iUetSY66rBai2nvMCimCc3-cdnVZWNWailLrHMal3jrbqLcUKsGzSbpZr2HMhRjNAKhfECXeglWgpgfYCdJApCCbyF9ofCJR1Zxudrm7XW8sAkCb4o-nMYCF6c80Of2AuwwBuPnHoH3S9LfFA3tneRVlfeq6f3tnvdZt_Bn84U02GaP2RWh8IgNqhNvSn_V_0BkX1Oeg</recordid><startdate>20220101</startdate><enddate>20220101</enddate><creator>K Raja Sravan Kumar</creator><creator>Gopikrishnan, S</creator><general>NeuroQuantology</general><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88G</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>M0S</scope><scope>M2M</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PSYQQ</scope><scope>Q9U</scope></search><sort><creationdate>20220101</creationdate><title>Wireless Energy Transfer for Internet of Everything: Energy-Efficient Resource Allocation in Digital Twins</title><author>K Raja Sravan Kumar ; Gopikrishnan, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29007019563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Antennas</topic><topic>Artificial intelligence</topic><topic>Batteries</topic><topic>Big Data</topic><topic>Computer science</topic><topic>Digital twins</topic><topic>Energy consumption</topic><topic>Energy efficiency</topic><topic>Internet of Things</topic><topic>Optimization</topic><topic>Resource allocation</topic><topic>Sensors</topic><topic>Smart cities</topic><topic>System effectiveness</topic><topic>Wireless communications</topic><toplevel>online_resources</toplevel><creatorcontrib>K Raja Sravan Kumar</creatorcontrib><creatorcontrib>Gopikrishnan, S</creatorcontrib><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Database (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>ProQuest Psychology</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><jtitle>NeuroQuantology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>K Raja Sravan Kumar</au><au>Gopikrishnan, S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Wireless Energy Transfer for Internet of Everything: Energy-Efficient Resource Allocation in Digital Twins</atitle><jtitle>NeuroQuantology</jtitle><date>2022-01-01</date><risdate>2022</risdate><volume>20</volume><issue>9</issue><spage>3289</spage><pages>3289-</pages><eissn>1303-5150</eissn><abstract>The objective of this research is to improve Wireless Energy Transfer (WET) reliability in the Internet of Things (IoT), this research aims to enhance the lifespan of wireless equipment and encourage ecologically responsible communica-tion. The technology of of WET based on IoT ecosystem Digital Twins (DTs) shows in what manner to maximize the energy effectiveness of massive MIMO systems. Because of MIMO’s ability to produce such narrow beams, other users will experience less interference. The BCD approach and fractional planning are used to maximize this MIMO system’s energy efficiency. The algorithm proposed throughput is best when the highest transmit power is 19dBm, according to simulation data</abstract><cop>Bornova Izmir</cop><pub>NeuroQuantology</pub><doi>10.14704/nq.2022.20.9.NQ44379</doi></addata></record> |
fulltext | fulltext |
identifier | EISSN: 1303-5150 |
ispartof | NeuroQuantology, 2022-01, Vol.20 (9), p.3289 |
issn | 1303-5150 |
language | eng |
recordid | cdi_proquest_journals_2900701956 |
source | EZB Electronic Journals Library |
subjects | Algorithms Antennas Artificial intelligence Batteries Big Data Computer science Digital twins Energy consumption Energy efficiency Internet of Things Optimization Resource allocation Sensors Smart cities System effectiveness Wireless communications |
title | Wireless Energy Transfer for Internet of Everything: Energy-Efficient Resource Allocation in Digital Twins |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T08%3A53%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Wireless%20Energy%20Transfer%20for%20Internet%20of%20Everything:%20Energy-Efficient%20Resource%20Allocation%20in%20Digital%20Twins&rft.jtitle=NeuroQuantology&rft.au=K%20Raja%20Sravan%20Kumar&rft.date=2022-01-01&rft.volume=20&rft.issue=9&rft.spage=3289&rft.pages=3289-&rft.eissn=1303-5150&rft_id=info:doi/10.14704/nq.2022.20.9.NQ44379&rft_dat=%3Cproquest%3E2900701956%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900701956&rft_id=info:pmid/&rfr_iscdi=true |