Perylene-diimide for organic solar cells: current scenario and prospects in molecular geometric, functionalization, and optoelectronic properties

Recent advancements in material design have facilitated the utilization of n-type conjugated molecules as solution-processed non-fullerene acceptors (NFAs), offering promising alternatives to conventional fullerene acceptors (FA) in organic solar cells (OSCs). This comprehensive review aims to shed...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials chemistry. A, Materials for energy and sustainability Materials for energy and sustainability, 2023-12, Vol.11 (48), p.26393-26425
Hauptverfasser: Murugan, Pachaiyappan, Ravindran, Ezhakudiayan, Sangeetha, Vajjiram, Liu, Shi-Yong, Jung, Jae Woong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26425
container_issue 48
container_start_page 26393
container_title Journal of materials chemistry. A, Materials for energy and sustainability
container_volume 11
creator Murugan, Pachaiyappan
Ravindran, Ezhakudiayan
Sangeetha, Vajjiram
Liu, Shi-Yong
Jung, Jae Woong
description Recent advancements in material design have facilitated the utilization of n-type conjugated molecules as solution-processed non-fullerene acceptors (NFAs), offering promising alternatives to conventional fullerene acceptors (FA) in organic solar cells (OSCs). This comprehensive review aims to shed light on the significant design concepts of perylene-diimide ( PDI ) chromophores, focusing on functionalized small molecule non-fullerene acceptors (SM-NFAs), which demonstrate high performance in OSCs. The PDI chromophore is systematically classified into mono, di, tri, and tetra PDI functionalized small molecule architectures, enabling a multidisciplinary exploration encompassing molecular structure, optical properties, electronic structure, and device performance within the scope of this review. Specifically, this review thoroughly discusses influential factors, such as rational design principles, diverse grafting sites for structural modifications, cutting-edge synthetic techniques, precise morphological control, and meticulous device optimization, all of which contribute to the advancement of PDI -based SM-NFAs in the next-generation materials category for OSCs. The proposed architectural configuration holds significant promise in facilitating roll-to-roll compatible OSCs that can achieve enhanced device performance. In the final chapter, we address chiral optics, organic photodetectors, sensors, and medical fluorescence imaging as PDI organic small molecules beyond OSCs to grasp the reader's knowledge. Furthermore, this review highlights the intricate interplay among the linear, bridged, and fused-ring types and the strategic linking positions of SM-NFA PDI s within high-performance NFAs, thereby elucidating their profound impact on photovoltaic properties based on more than 300 PDI derivatives. By effectively demonstrating the superior service performance and stability of PDI s-NFAs compared to conventional FA-based OSCs, this review substantiates the expectation that the forthcoming generation of PDI s-NFAs will exhibit notably improved optoelectronic performance. This review highlights key features of PDA-NFA: molecular design, diverse grafting sites, advanced synthesis, morphology control, and optimized device performance. This review provides a vision for high-performance PDA-NFA for NF-OSCs.
doi_str_mv 10.1039/d3ta04925f
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2900641110</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900641110</sourcerecordid><originalsourceid>FETCH-LOGICAL-c281t-b255637045e7d1900caa3a2042a2b62d1aa5e1177fbb07171c278991b47bd4433</originalsourceid><addsrcrecordid>eNpFkU1PwzAMhiMEEtPYhTtSJG5ohST9SMttGgyQJsFhnKs0dadMbVKS9DD-Bf-YdEPDF_vw-LX9GqFrSu4piYuHOvaCJAVLmzM0YSQlEU-K7PxU5_klmjm3IyFyQrKimKCfD7D7FjREtVKdqgE3xmJjt0IriZ1phcUS2tY9YjlYC9pjJ0ELqwwWusa9Na4H6R1WGnemBTmMLVswHXir5Bw3g5ZeGS1a9S3GYn5oNL03EHBvzTgp6PRgvQJ3hS4a0TqY_eUp-lw9b5av0fr95W25WEeS5dRHFUvTLOYkSYHXtCBEChELRhImWJWxmgqRAqWcN1VFOOVUMp4XBa0SXtVJEsdTdHvUDaO_BnC-3JnBhjVdyYJcllAaXJ2iuyMlw6HOQlP2VnXC7ktKytH18ineLA6urwJ8c4Stkyfu_yvxL0bfgUQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900641110</pqid></control><display><type>article</type><title>Perylene-diimide for organic solar cells: current scenario and prospects in molecular geometric, functionalization, and optoelectronic properties</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Murugan, Pachaiyappan ; Ravindran, Ezhakudiayan ; Sangeetha, Vajjiram ; Liu, Shi-Yong ; Jung, Jae Woong</creator><creatorcontrib>Murugan, Pachaiyappan ; Ravindran, Ezhakudiayan ; Sangeetha, Vajjiram ; Liu, Shi-Yong ; Jung, Jae Woong</creatorcontrib><description>Recent advancements in material design have facilitated the utilization of n-type conjugated molecules as solution-processed non-fullerene acceptors (NFAs), offering promising alternatives to conventional fullerene acceptors (FA) in organic solar cells (OSCs). This comprehensive review aims to shed light on the significant design concepts of perylene-diimide ( PDI ) chromophores, focusing on functionalized small molecule non-fullerene acceptors (SM-NFAs), which demonstrate high performance in OSCs. The PDI chromophore is systematically classified into mono, di, tri, and tetra PDI functionalized small molecule architectures, enabling a multidisciplinary exploration encompassing molecular structure, optical properties, electronic structure, and device performance within the scope of this review. Specifically, this review thoroughly discusses influential factors, such as rational design principles, diverse grafting sites for structural modifications, cutting-edge synthetic techniques, precise morphological control, and meticulous device optimization, all of which contribute to the advancement of PDI -based SM-NFAs in the next-generation materials category for OSCs. The proposed architectural configuration holds significant promise in facilitating roll-to-roll compatible OSCs that can achieve enhanced device performance. In the final chapter, we address chiral optics, organic photodetectors, sensors, and medical fluorescence imaging as PDI organic small molecules beyond OSCs to grasp the reader's knowledge. Furthermore, this review highlights the intricate interplay among the linear, bridged, and fused-ring types and the strategic linking positions of SM-NFA PDI s within high-performance NFAs, thereby elucidating their profound impact on photovoltaic properties based on more than 300 PDI derivatives. By effectively demonstrating the superior service performance and stability of PDI s-NFAs compared to conventional FA-based OSCs, this review substantiates the expectation that the forthcoming generation of PDI s-NFAs will exhibit notably improved optoelectronic performance. This review highlights key features of PDA-NFA: molecular design, diverse grafting sites, advanced synthesis, morphology control, and optimized device performance. This review provides a vision for high-performance PDA-NFA for NF-OSCs.</description><identifier>ISSN: 2050-7488</identifier><identifier>EISSN: 2050-7496</identifier><identifier>DOI: 10.1039/d3ta04925f</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Chromophores ; Design ; Diimide ; Electronic structure ; Fluorescence ; Fullerenes ; Molecular structure ; Optical properties ; Optics ; Optimization ; Optoelectronics ; Photovoltaic cells ; Photovoltaics ; Reviews ; Solar cells</subject><ispartof>Journal of materials chemistry. A, Materials for energy and sustainability, 2023-12, Vol.11 (48), p.26393-26425</ispartof><rights>Copyright Royal Society of Chemistry 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c281t-b255637045e7d1900caa3a2042a2b62d1aa5e1177fbb07171c278991b47bd4433</citedby><cites>FETCH-LOGICAL-c281t-b255637045e7d1900caa3a2042a2b62d1aa5e1177fbb07171c278991b47bd4433</cites><orcidid>0000-0002-3569-3826 ; 0000-0002-2473-0222</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Murugan, Pachaiyappan</creatorcontrib><creatorcontrib>Ravindran, Ezhakudiayan</creatorcontrib><creatorcontrib>Sangeetha, Vajjiram</creatorcontrib><creatorcontrib>Liu, Shi-Yong</creatorcontrib><creatorcontrib>Jung, Jae Woong</creatorcontrib><title>Perylene-diimide for organic solar cells: current scenario and prospects in molecular geometric, functionalization, and optoelectronic properties</title><title>Journal of materials chemistry. A, Materials for energy and sustainability</title><description>Recent advancements in material design have facilitated the utilization of n-type conjugated molecules as solution-processed non-fullerene acceptors (NFAs), offering promising alternatives to conventional fullerene acceptors (FA) in organic solar cells (OSCs). This comprehensive review aims to shed light on the significant design concepts of perylene-diimide ( PDI ) chromophores, focusing on functionalized small molecule non-fullerene acceptors (SM-NFAs), which demonstrate high performance in OSCs. The PDI chromophore is systematically classified into mono, di, tri, and tetra PDI functionalized small molecule architectures, enabling a multidisciplinary exploration encompassing molecular structure, optical properties, electronic structure, and device performance within the scope of this review. Specifically, this review thoroughly discusses influential factors, such as rational design principles, diverse grafting sites for structural modifications, cutting-edge synthetic techniques, precise morphological control, and meticulous device optimization, all of which contribute to the advancement of PDI -based SM-NFAs in the next-generation materials category for OSCs. The proposed architectural configuration holds significant promise in facilitating roll-to-roll compatible OSCs that can achieve enhanced device performance. In the final chapter, we address chiral optics, organic photodetectors, sensors, and medical fluorescence imaging as PDI organic small molecules beyond OSCs to grasp the reader's knowledge. Furthermore, this review highlights the intricate interplay among the linear, bridged, and fused-ring types and the strategic linking positions of SM-NFA PDI s within high-performance NFAs, thereby elucidating their profound impact on photovoltaic properties based on more than 300 PDI derivatives. By effectively demonstrating the superior service performance and stability of PDI s-NFAs compared to conventional FA-based OSCs, this review substantiates the expectation that the forthcoming generation of PDI s-NFAs will exhibit notably improved optoelectronic performance. This review highlights key features of PDA-NFA: molecular design, diverse grafting sites, advanced synthesis, morphology control, and optimized device performance. This review provides a vision for high-performance PDA-NFA for NF-OSCs.</description><subject>Chromophores</subject><subject>Design</subject><subject>Diimide</subject><subject>Electronic structure</subject><subject>Fluorescence</subject><subject>Fullerenes</subject><subject>Molecular structure</subject><subject>Optical properties</subject><subject>Optics</subject><subject>Optimization</subject><subject>Optoelectronics</subject><subject>Photovoltaic cells</subject><subject>Photovoltaics</subject><subject>Reviews</subject><subject>Solar cells</subject><issn>2050-7488</issn><issn>2050-7496</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpFkU1PwzAMhiMEEtPYhTtSJG5ohST9SMttGgyQJsFhnKs0dadMbVKS9DD-Bf-YdEPDF_vw-LX9GqFrSu4piYuHOvaCJAVLmzM0YSQlEU-K7PxU5_klmjm3IyFyQrKimKCfD7D7FjREtVKdqgE3xmJjt0IriZ1phcUS2tY9YjlYC9pjJ0ELqwwWusa9Na4H6R1WGnemBTmMLVswHXir5Bw3g5ZeGS1a9S3GYn5oNL03EHBvzTgp6PRgvQJ3hS4a0TqY_eUp-lw9b5av0fr95W25WEeS5dRHFUvTLOYkSYHXtCBEChELRhImWJWxmgqRAqWcN1VFOOVUMp4XBa0SXtVJEsdTdHvUDaO_BnC-3JnBhjVdyYJcllAaXJ2iuyMlw6HOQlP2VnXC7ktKytH18ineLA6urwJ8c4Stkyfu_yvxL0bfgUQ</recordid><startdate>20231212</startdate><enddate>20231212</enddate><creator>Murugan, Pachaiyappan</creator><creator>Ravindran, Ezhakudiayan</creator><creator>Sangeetha, Vajjiram</creator><creator>Liu, Shi-Yong</creator><creator>Jung, Jae Woong</creator><general>Royal Society of Chemistry</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7ST</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>JG9</scope><scope>L7M</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-3569-3826</orcidid><orcidid>https://orcid.org/0000-0002-2473-0222</orcidid></search><sort><creationdate>20231212</creationdate><title>Perylene-diimide for organic solar cells: current scenario and prospects in molecular geometric, functionalization, and optoelectronic properties</title><author>Murugan, Pachaiyappan ; Ravindran, Ezhakudiayan ; Sangeetha, Vajjiram ; Liu, Shi-Yong ; Jung, Jae Woong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c281t-b255637045e7d1900caa3a2042a2b62d1aa5e1177fbb07171c278991b47bd4433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Chromophores</topic><topic>Design</topic><topic>Diimide</topic><topic>Electronic structure</topic><topic>Fluorescence</topic><topic>Fullerenes</topic><topic>Molecular structure</topic><topic>Optical properties</topic><topic>Optics</topic><topic>Optimization</topic><topic>Optoelectronics</topic><topic>Photovoltaic cells</topic><topic>Photovoltaics</topic><topic>Reviews</topic><topic>Solar cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Murugan, Pachaiyappan</creatorcontrib><creatorcontrib>Ravindran, Ezhakudiayan</creatorcontrib><creatorcontrib>Sangeetha, Vajjiram</creatorcontrib><creatorcontrib>Liu, Shi-Yong</creatorcontrib><creatorcontrib>Jung, Jae Woong</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Environment Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Environment Abstracts</collection><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Murugan, Pachaiyappan</au><au>Ravindran, Ezhakudiayan</au><au>Sangeetha, Vajjiram</au><au>Liu, Shi-Yong</au><au>Jung, Jae Woong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Perylene-diimide for organic solar cells: current scenario and prospects in molecular geometric, functionalization, and optoelectronic properties</atitle><jtitle>Journal of materials chemistry. A, Materials for energy and sustainability</jtitle><date>2023-12-12</date><risdate>2023</risdate><volume>11</volume><issue>48</issue><spage>26393</spage><epage>26425</epage><pages>26393-26425</pages><issn>2050-7488</issn><eissn>2050-7496</eissn><abstract>Recent advancements in material design have facilitated the utilization of n-type conjugated molecules as solution-processed non-fullerene acceptors (NFAs), offering promising alternatives to conventional fullerene acceptors (FA) in organic solar cells (OSCs). This comprehensive review aims to shed light on the significant design concepts of perylene-diimide ( PDI ) chromophores, focusing on functionalized small molecule non-fullerene acceptors (SM-NFAs), which demonstrate high performance in OSCs. The PDI chromophore is systematically classified into mono, di, tri, and tetra PDI functionalized small molecule architectures, enabling a multidisciplinary exploration encompassing molecular structure, optical properties, electronic structure, and device performance within the scope of this review. Specifically, this review thoroughly discusses influential factors, such as rational design principles, diverse grafting sites for structural modifications, cutting-edge synthetic techniques, precise morphological control, and meticulous device optimization, all of which contribute to the advancement of PDI -based SM-NFAs in the next-generation materials category for OSCs. The proposed architectural configuration holds significant promise in facilitating roll-to-roll compatible OSCs that can achieve enhanced device performance. In the final chapter, we address chiral optics, organic photodetectors, sensors, and medical fluorescence imaging as PDI organic small molecules beyond OSCs to grasp the reader's knowledge. Furthermore, this review highlights the intricate interplay among the linear, bridged, and fused-ring types and the strategic linking positions of SM-NFA PDI s within high-performance NFAs, thereby elucidating their profound impact on photovoltaic properties based on more than 300 PDI derivatives. By effectively demonstrating the superior service performance and stability of PDI s-NFAs compared to conventional FA-based OSCs, this review substantiates the expectation that the forthcoming generation of PDI s-NFAs will exhibit notably improved optoelectronic performance. This review highlights key features of PDA-NFA: molecular design, diverse grafting sites, advanced synthesis, morphology control, and optimized device performance. This review provides a vision for high-performance PDA-NFA for NF-OSCs.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/d3ta04925f</doi><tpages>33</tpages><orcidid>https://orcid.org/0000-0002-3569-3826</orcidid><orcidid>https://orcid.org/0000-0002-2473-0222</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2050-7488
ispartof Journal of materials chemistry. A, Materials for energy and sustainability, 2023-12, Vol.11 (48), p.26393-26425
issn 2050-7488
2050-7496
language eng
recordid cdi_proquest_journals_2900641110
source Royal Society Of Chemistry Journals 2008-
subjects Chromophores
Design
Diimide
Electronic structure
Fluorescence
Fullerenes
Molecular structure
Optical properties
Optics
Optimization
Optoelectronics
Photovoltaic cells
Photovoltaics
Reviews
Solar cells
title Perylene-diimide for organic solar cells: current scenario and prospects in molecular geometric, functionalization, and optoelectronic properties
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T04%3A47%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Perylene-diimide%20for%20organic%20solar%20cells:%20current%20scenario%20and%20prospects%20in%20molecular%20geometric,%20functionalization,%20and%20optoelectronic%20properties&rft.jtitle=Journal%20of%20materials%20chemistry.%20A,%20Materials%20for%20energy%20and%20sustainability&rft.au=Murugan,%20Pachaiyappan&rft.date=2023-12-12&rft.volume=11&rft.issue=48&rft.spage=26393&rft.epage=26425&rft.pages=26393-26425&rft.issn=2050-7488&rft.eissn=2050-7496&rft_id=info:doi/10.1039/d3ta04925f&rft_dat=%3Cproquest_cross%3E2900641110%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900641110&rft_id=info:pmid/&rfr_iscdi=true