A phase‐field formulation based on an extended F‐criterion for rock fracture
In this paper a phase‐field formulation based on an extended F‐criterion (the normalized strain energy release rate criterion) is proposed to simulate tensile‐compressive‐shear rock fractures. By applying the F‐criterion, the phase‐field crack‐driving energy decomposition is determined by a directio...
Gespeichert in:
Veröffentlicht in: | International journal for numerical and analytical methods in geomechanics 2024-01, Vol.48 (1), p.250-269 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 269 |
---|---|
container_issue | 1 |
container_start_page | 250 |
container_title | International journal for numerical and analytical methods in geomechanics |
container_volume | 48 |
creator | Sun, Pan Lu, Zhitang Wang, Zhiliang Wu, Jie |
description | In this paper a phase‐field formulation based on an extended F‐criterion (the normalized strain energy release rate criterion) is proposed to simulate tensile‐compressive‐shear rock fractures. By applying the F‐criterion, the phase‐field crack‐driving energy decomposition is determined by a direction search which maximizes the local fracture dissipation. In compressive‐shear states, the computation is supplemented by an explicitly expressed confinement‐dependent mode‐II fracture energy release rate, and the cracking angle is determined by both the fracture energy and strain states. The hybrid formulation and alternate minimization algorithm are adopted for the numerical examples in this paper. Fractures for rock and rock‐like specimens subjected to compression demonstrate the ability of the present model in capturing tensile‐compressive‐shear rock fracture behaviors. |
doi_str_mv | 10.1002/nag.3637 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2900598721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900598721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2547-2d4a12348968eb50cd7d8580560c0f66319ad09b3320d2eef0de3df2f59f2fd43</originalsourceid><addsrcrecordid>eNp10M1OAyEQB3BiNLFWEx-BxIuXrQMs7HJsGltNGvWgZ0L50K3b3RV2o735CD6jTyK1Xr0Aw_wCmT9C5wQmBIBeNfp5wgQrDtCIgBSZLDk7RCNId5kEQY7RSYxrAOCpO0IPU9y96Oi-P7985WqLfRs2Q637qm3wKjUsTgfdYPfRu8amcp6oCVXvwo4kjkNrXrEP2vRDcKfoyOs6urO_fYye5tePs5tseb-4nU2XmaE8LzJqc00oy0spSrfiYGxhS14CF2DAC8GI1BbkijEKljrnwTpmPfVcpsXmbIwu9u92oX0bXOzVuh1Ck75UVKbpZFlQktTlXpnQxhicV12oNjpsFQG1y0ulvNQur0SzPX2varf916m76eLX_wBRmmz_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900598721</pqid></control><display><type>article</type><title>A phase‐field formulation based on an extended F‐criterion for rock fracture</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sun, Pan ; Lu, Zhitang ; Wang, Zhiliang ; Wu, Jie</creator><creatorcontrib>Sun, Pan ; Lu, Zhitang ; Wang, Zhiliang ; Wu, Jie</creatorcontrib><description>In this paper a phase‐field formulation based on an extended F‐criterion (the normalized strain energy release rate criterion) is proposed to simulate tensile‐compressive‐shear rock fractures. By applying the F‐criterion, the phase‐field crack‐driving energy decomposition is determined by a direction search which maximizes the local fracture dissipation. In compressive‐shear states, the computation is supplemented by an explicitly expressed confinement‐dependent mode‐II fracture energy release rate, and the cracking angle is determined by both the fracture energy and strain states. The hybrid formulation and alternate minimization algorithm are adopted for the numerical examples in this paper. Fractures for rock and rock‐like specimens subjected to compression demonstrate the ability of the present model in capturing tensile‐compressive‐shear rock fracture behaviors.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.3637</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Compression ; compressive‐shear fracture ; Computation ; Cracking (fracturing) ; Criteria ; directional decomposition ; Energy ; Fractures ; phase‐field ; Rock ; rock fracture ; Rocks ; Shear ; Strain energy release rate</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2024-01, Vol.48 (1), p.250-269</ispartof><rights>2023 John Wiley & Sons Ltd.</rights><rights>2024 John Wiley & Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2547-2d4a12348968eb50cd7d8580560c0f66319ad09b3320d2eef0de3df2f59f2fd43</cites><orcidid>0000-0002-4107-8336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.3637$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.3637$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Sun, Pan</creatorcontrib><creatorcontrib>Lu, Zhitang</creatorcontrib><creatorcontrib>Wang, Zhiliang</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><title>A phase‐field formulation based on an extended F‐criterion for rock fracture</title><title>International journal for numerical and analytical methods in geomechanics</title><description>In this paper a phase‐field formulation based on an extended F‐criterion (the normalized strain energy release rate criterion) is proposed to simulate tensile‐compressive‐shear rock fractures. By applying the F‐criterion, the phase‐field crack‐driving energy decomposition is determined by a direction search which maximizes the local fracture dissipation. In compressive‐shear states, the computation is supplemented by an explicitly expressed confinement‐dependent mode‐II fracture energy release rate, and the cracking angle is determined by both the fracture energy and strain states. The hybrid formulation and alternate minimization algorithm are adopted for the numerical examples in this paper. Fractures for rock and rock‐like specimens subjected to compression demonstrate the ability of the present model in capturing tensile‐compressive‐shear rock fracture behaviors.</description><subject>Algorithms</subject><subject>Compression</subject><subject>compressive‐shear fracture</subject><subject>Computation</subject><subject>Cracking (fracturing)</subject><subject>Criteria</subject><subject>directional decomposition</subject><subject>Energy</subject><subject>Fractures</subject><subject>phase‐field</subject><subject>Rock</subject><subject>rock fracture</subject><subject>Rocks</subject><subject>Shear</subject><subject>Strain energy release rate</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10M1OAyEQB3BiNLFWEx-BxIuXrQMs7HJsGltNGvWgZ0L50K3b3RV2o735CD6jTyK1Xr0Aw_wCmT9C5wQmBIBeNfp5wgQrDtCIgBSZLDk7RCNId5kEQY7RSYxrAOCpO0IPU9y96Oi-P7985WqLfRs2Q637qm3wKjUsTgfdYPfRu8amcp6oCVXvwo4kjkNrXrEP2vRDcKfoyOs6urO_fYye5tePs5tseb-4nU2XmaE8LzJqc00oy0spSrfiYGxhS14CF2DAC8GI1BbkijEKljrnwTpmPfVcpsXmbIwu9u92oX0bXOzVuh1Ck75UVKbpZFlQktTlXpnQxhicV12oNjpsFQG1y0ulvNQur0SzPX2varf916m76eLX_wBRmmz_</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Sun, Pan</creator><creator>Lu, Zhitang</creator><creator>Wang, Zhiliang</creator><creator>Wu, Jie</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4107-8336</orcidid></search><sort><creationdate>202401</creationdate><title>A phase‐field formulation based on an extended F‐criterion for rock fracture</title><author>Sun, Pan ; Lu, Zhitang ; Wang, Zhiliang ; Wu, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2547-2d4a12348968eb50cd7d8580560c0f66319ad09b3320d2eef0de3df2f59f2fd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Compression</topic><topic>compressive‐shear fracture</topic><topic>Computation</topic><topic>Cracking (fracturing)</topic><topic>Criteria</topic><topic>directional decomposition</topic><topic>Energy</topic><topic>Fractures</topic><topic>phase‐field</topic><topic>Rock</topic><topic>rock fracture</topic><topic>Rocks</topic><topic>Shear</topic><topic>Strain energy release rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Pan</creatorcontrib><creatorcontrib>Lu, Zhitang</creatorcontrib><creatorcontrib>Wang, Zhiliang</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Pan</au><au>Lu, Zhitang</au><au>Wang, Zhiliang</au><au>Wu, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A phase‐field formulation based on an extended F‐criterion for rock fracture</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><date>2024-01</date><risdate>2024</risdate><volume>48</volume><issue>1</issue><spage>250</spage><epage>269</epage><pages>250-269</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><abstract>In this paper a phase‐field formulation based on an extended F‐criterion (the normalized strain energy release rate criterion) is proposed to simulate tensile‐compressive‐shear rock fractures. By applying the F‐criterion, the phase‐field crack‐driving energy decomposition is determined by a direction search which maximizes the local fracture dissipation. In compressive‐shear states, the computation is supplemented by an explicitly expressed confinement‐dependent mode‐II fracture energy release rate, and the cracking angle is determined by both the fracture energy and strain states. The hybrid formulation and alternate minimization algorithm are adopted for the numerical examples in this paper. Fractures for rock and rock‐like specimens subjected to compression demonstrate the ability of the present model in capturing tensile‐compressive‐shear rock fracture behaviors.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nag.3637</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4107-8336</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0363-9061 |
ispartof | International journal for numerical and analytical methods in geomechanics, 2024-01, Vol.48 (1), p.250-269 |
issn | 0363-9061 1096-9853 |
language | eng |
recordid | cdi_proquest_journals_2900598721 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Algorithms Compression compressive‐shear fracture Computation Cracking (fracturing) Criteria directional decomposition Energy Fractures phase‐field Rock rock fracture Rocks Shear Strain energy release rate |
title | A phase‐field formulation based on an extended F‐criterion for rock fracture |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T06%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20phase%E2%80%90field%20formulation%20based%20on%20an%20extended%20F%E2%80%90criterion%20for%20rock%20fracture&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Sun,%20Pan&rft.date=2024-01&rft.volume=48&rft.issue=1&rft.spage=250&rft.epage=269&rft.pages=250-269&rft.issn=0363-9061&rft.eissn=1096-9853&rft_id=info:doi/10.1002/nag.3637&rft_dat=%3Cproquest_cross%3E2900598721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900598721&rft_id=info:pmid/&rfr_iscdi=true |