A phase‐field formulation based on an extended F‐criterion for rock fracture

In this paper a phase‐field formulation based on an extended F‐criterion (the normalized strain energy release rate criterion) is proposed to simulate tensile‐compressive‐shear rock fractures. By applying the F‐criterion, the phase‐field crack‐driving energy decomposition is determined by a directio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal for numerical and analytical methods in geomechanics 2024-01, Vol.48 (1), p.250-269
Hauptverfasser: Sun, Pan, Lu, Zhitang, Wang, Zhiliang, Wu, Jie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 269
container_issue 1
container_start_page 250
container_title International journal for numerical and analytical methods in geomechanics
container_volume 48
creator Sun, Pan
Lu, Zhitang
Wang, Zhiliang
Wu, Jie
description In this paper a phase‐field formulation based on an extended F‐criterion (the normalized strain energy release rate criterion) is proposed to simulate tensile‐compressive‐shear rock fractures. By applying the F‐criterion, the phase‐field crack‐driving energy decomposition is determined by a direction search which maximizes the local fracture dissipation. In compressive‐shear states, the computation is supplemented by an explicitly expressed confinement‐dependent mode‐II fracture energy release rate, and the cracking angle is determined by both the fracture energy and strain states. The hybrid formulation and alternate minimization algorithm are adopted for the numerical examples in this paper. Fractures for rock and rock‐like specimens subjected to compression demonstrate the ability of the present model in capturing tensile‐compressive‐shear rock fracture behaviors.
doi_str_mv 10.1002/nag.3637
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2900598721</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900598721</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2547-2d4a12348968eb50cd7d8580560c0f66319ad09b3320d2eef0de3df2f59f2fd43</originalsourceid><addsrcrecordid>eNp10M1OAyEQB3BiNLFWEx-BxIuXrQMs7HJsGltNGvWgZ0L50K3b3RV2o735CD6jTyK1Xr0Aw_wCmT9C5wQmBIBeNfp5wgQrDtCIgBSZLDk7RCNId5kEQY7RSYxrAOCpO0IPU9y96Oi-P7985WqLfRs2Q637qm3wKjUsTgfdYPfRu8amcp6oCVXvwo4kjkNrXrEP2vRDcKfoyOs6urO_fYye5tePs5tseb-4nU2XmaE8LzJqc00oy0spSrfiYGxhS14CF2DAC8GI1BbkijEKljrnwTpmPfVcpsXmbIwu9u92oX0bXOzVuh1Ck75UVKbpZFlQktTlXpnQxhicV12oNjpsFQG1y0ulvNQur0SzPX2varf916m76eLX_wBRmmz_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900598721</pqid></control><display><type>article</type><title>A phase‐field formulation based on an extended F‐criterion for rock fracture</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Sun, Pan ; Lu, Zhitang ; Wang, Zhiliang ; Wu, Jie</creator><creatorcontrib>Sun, Pan ; Lu, Zhitang ; Wang, Zhiliang ; Wu, Jie</creatorcontrib><description>In this paper a phase‐field formulation based on an extended F‐criterion (the normalized strain energy release rate criterion) is proposed to simulate tensile‐compressive‐shear rock fractures. By applying the F‐criterion, the phase‐field crack‐driving energy decomposition is determined by a direction search which maximizes the local fracture dissipation. In compressive‐shear states, the computation is supplemented by an explicitly expressed confinement‐dependent mode‐II fracture energy release rate, and the cracking angle is determined by both the fracture energy and strain states. The hybrid formulation and alternate minimization algorithm are adopted for the numerical examples in this paper. Fractures for rock and rock‐like specimens subjected to compression demonstrate the ability of the present model in capturing tensile‐compressive‐shear rock fracture behaviors.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.3637</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Algorithms ; Compression ; compressive‐shear fracture ; Computation ; Cracking (fracturing) ; Criteria ; directional decomposition ; Energy ; Fractures ; phase‐field ; Rock ; rock fracture ; Rocks ; Shear ; Strain energy release rate</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2024-01, Vol.48 (1), p.250-269</ispartof><rights>2023 John Wiley &amp; Sons Ltd.</rights><rights>2024 John Wiley &amp; Sons Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2547-2d4a12348968eb50cd7d8580560c0f66319ad09b3320d2eef0de3df2f59f2fd43</cites><orcidid>0000-0002-4107-8336</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnag.3637$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnag.3637$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Sun, Pan</creatorcontrib><creatorcontrib>Lu, Zhitang</creatorcontrib><creatorcontrib>Wang, Zhiliang</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><title>A phase‐field formulation based on an extended F‐criterion for rock fracture</title><title>International journal for numerical and analytical methods in geomechanics</title><description>In this paper a phase‐field formulation based on an extended F‐criterion (the normalized strain energy release rate criterion) is proposed to simulate tensile‐compressive‐shear rock fractures. By applying the F‐criterion, the phase‐field crack‐driving energy decomposition is determined by a direction search which maximizes the local fracture dissipation. In compressive‐shear states, the computation is supplemented by an explicitly expressed confinement‐dependent mode‐II fracture energy release rate, and the cracking angle is determined by both the fracture energy and strain states. The hybrid formulation and alternate minimization algorithm are adopted for the numerical examples in this paper. Fractures for rock and rock‐like specimens subjected to compression demonstrate the ability of the present model in capturing tensile‐compressive‐shear rock fracture behaviors.</description><subject>Algorithms</subject><subject>Compression</subject><subject>compressive‐shear fracture</subject><subject>Computation</subject><subject>Cracking (fracturing)</subject><subject>Criteria</subject><subject>directional decomposition</subject><subject>Energy</subject><subject>Fractures</subject><subject>phase‐field</subject><subject>Rock</subject><subject>rock fracture</subject><subject>Rocks</subject><subject>Shear</subject><subject>Strain energy release rate</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp10M1OAyEQB3BiNLFWEx-BxIuXrQMs7HJsGltNGvWgZ0L50K3b3RV2o735CD6jTyK1Xr0Aw_wCmT9C5wQmBIBeNfp5wgQrDtCIgBSZLDk7RCNId5kEQY7RSYxrAOCpO0IPU9y96Oi-P7985WqLfRs2Q637qm3wKjUsTgfdYPfRu8amcp6oCVXvwo4kjkNrXrEP2vRDcKfoyOs6urO_fYye5tePs5tseb-4nU2XmaE8LzJqc00oy0spSrfiYGxhS14CF2DAC8GI1BbkijEKljrnwTpmPfVcpsXmbIwu9u92oX0bXOzVuh1Ck75UVKbpZFlQktTlXpnQxhicV12oNjpsFQG1y0ulvNQur0SzPX2varf916m76eLX_wBRmmz_</recordid><startdate>202401</startdate><enddate>202401</enddate><creator>Sun, Pan</creator><creator>Lu, Zhitang</creator><creator>Wang, Zhiliang</creator><creator>Wu, Jie</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-4107-8336</orcidid></search><sort><creationdate>202401</creationdate><title>A phase‐field formulation based on an extended F‐criterion for rock fracture</title><author>Sun, Pan ; Lu, Zhitang ; Wang, Zhiliang ; Wu, Jie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2547-2d4a12348968eb50cd7d8580560c0f66319ad09b3320d2eef0de3df2f59f2fd43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Algorithms</topic><topic>Compression</topic><topic>compressive‐shear fracture</topic><topic>Computation</topic><topic>Cracking (fracturing)</topic><topic>Criteria</topic><topic>directional decomposition</topic><topic>Energy</topic><topic>Fractures</topic><topic>phase‐field</topic><topic>Rock</topic><topic>rock fracture</topic><topic>Rocks</topic><topic>Shear</topic><topic>Strain energy release rate</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sun, Pan</creatorcontrib><creatorcontrib>Lu, Zhitang</creatorcontrib><creatorcontrib>Wang, Zhiliang</creatorcontrib><creatorcontrib>Wu, Jie</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sun, Pan</au><au>Lu, Zhitang</au><au>Wang, Zhiliang</au><au>Wu, Jie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A phase‐field formulation based on an extended F‐criterion for rock fracture</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><date>2024-01</date><risdate>2024</risdate><volume>48</volume><issue>1</issue><spage>250</spage><epage>269</epage><pages>250-269</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><abstract>In this paper a phase‐field formulation based on an extended F‐criterion (the normalized strain energy release rate criterion) is proposed to simulate tensile‐compressive‐shear rock fractures. By applying the F‐criterion, the phase‐field crack‐driving energy decomposition is determined by a direction search which maximizes the local fracture dissipation. In compressive‐shear states, the computation is supplemented by an explicitly expressed confinement‐dependent mode‐II fracture energy release rate, and the cracking angle is determined by both the fracture energy and strain states. The hybrid formulation and alternate minimization algorithm are adopted for the numerical examples in this paper. Fractures for rock and rock‐like specimens subjected to compression demonstrate the ability of the present model in capturing tensile‐compressive‐shear rock fracture behaviors.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/nag.3637</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0002-4107-8336</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0363-9061
ispartof International journal for numerical and analytical methods in geomechanics, 2024-01, Vol.48 (1), p.250-269
issn 0363-9061
1096-9853
language eng
recordid cdi_proquest_journals_2900598721
source Wiley Online Library Journals Frontfile Complete
subjects Algorithms
Compression
compressive‐shear fracture
Computation
Cracking (fracturing)
Criteria
directional decomposition
Energy
Fractures
phase‐field
Rock
rock fracture
Rocks
Shear
Strain energy release rate
title A phase‐field formulation based on an extended F‐criterion for rock fracture
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T06%3A17%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20phase%E2%80%90field%20formulation%20based%20on%20an%20extended%20F%E2%80%90criterion%20for%20rock%20fracture&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Sun,%20Pan&rft.date=2024-01&rft.volume=48&rft.issue=1&rft.spage=250&rft.epage=269&rft.pages=250-269&rft.issn=0363-9061&rft.eissn=1096-9853&rft_id=info:doi/10.1002/nag.3637&rft_dat=%3Cproquest_cross%3E2900598721%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900598721&rft_id=info:pmid/&rfr_iscdi=true