Sharp bounds on the height of K-semistable Fano varieties II, the log case
In our previous work we conjectured - inspired by an algebro-geometric result of Fujita - that the height of an arithmetic Fano variety X of relative dimension \(n\) is maximal when X is the projective space \(\mathbb{P}^n_{\mathbb{Z}}\) over the integers, endowed with the Fubini-Study metric, if th...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-03 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Andreasson, Rolf Berman, Robert J |
description | In our previous work we conjectured - inspired by an algebro-geometric result of Fujita - that the height of an arithmetic Fano variety X of relative dimension \(n\) is maximal when X is the projective space \(\mathbb{P}^n_{\mathbb{Z}}\) over the integers, endowed with the Fubini-Study metric, if the corresponding complex Fano variety is K-semistable. In this work the conjecture is settled for diagonal hypersurfaces in \(\mathbb{P}^{n+1}_{\mathbb{Z}}\). The proof is based on a logarithmic extension of our previous conjecture, of independent interest, which is established for toric log Fano varieties of relative dimension at most three, hyperplane arrangements on \(\mathbb{P}^n_{\mathbb{Z}}\), as well as for general arithmetic orbifold Fano surfaces. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2900444164</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900444164</sourcerecordid><originalsourceid>FETCH-proquest_journals_29004441643</originalsourceid><addsrcrecordid>eNqNyk0KwjAQQOEgCBbtHQbcWkiTtOpaLP4sdV9SnTYptamZ1PMr4gFcvcX7JiwSUqbJRgkxYzFRyzkX-VpkmYzY6WK0H6ByY38ncD0Eg2DQNiaAq-GcED4sBV11CIXuHby0txgsEhyPq6_uXAM3Tbhg01p3hPGvc7Ys9tfdIRm8e45IoWzd6PvPKsWWc6VUmiv5n3oDJS07Vg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900444164</pqid></control><display><type>article</type><title>Sharp bounds on the height of K-semistable Fano varieties II, the log case</title><source>Free E- Journals</source><creator>Andreasson, Rolf ; Berman, Robert J</creator><creatorcontrib>Andreasson, Rolf ; Berman, Robert J</creatorcontrib><description>In our previous work we conjectured - inspired by an algebro-geometric result of Fujita - that the height of an arithmetic Fano variety X of relative dimension \(n\) is maximal when X is the projective space \(\mathbb{P}^n_{\mathbb{Z}}\) over the integers, endowed with the Fubini-Study metric, if the corresponding complex Fano variety is K-semistable. In this work the conjecture is settled for diagonal hypersurfaces in \(\mathbb{P}^{n+1}_{\mathbb{Z}}\). The proof is based on a logarithmic extension of our previous conjecture, of independent interest, which is established for toric log Fano varieties of relative dimension at most three, hyperplane arrangements on \(\mathbb{P}^n_{\mathbb{Z}}\), as well as for general arithmetic orbifold Fano surfaces.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Arithmetic ; Hyperplanes ; Hyperspaces ; Logarithms</subject><ispartof>arXiv.org, 2024-03</ispartof><rights>2024. This work is published under http://arxiv.org/licenses/nonexclusive-distrib/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Andreasson, Rolf</creatorcontrib><creatorcontrib>Berman, Robert J</creatorcontrib><title>Sharp bounds on the height of K-semistable Fano varieties II, the log case</title><title>arXiv.org</title><description>In our previous work we conjectured - inspired by an algebro-geometric result of Fujita - that the height of an arithmetic Fano variety X of relative dimension \(n\) is maximal when X is the projective space \(\mathbb{P}^n_{\mathbb{Z}}\) over the integers, endowed with the Fubini-Study metric, if the corresponding complex Fano variety is K-semistable. In this work the conjecture is settled for diagonal hypersurfaces in \(\mathbb{P}^{n+1}_{\mathbb{Z}}\). The proof is based on a logarithmic extension of our previous conjecture, of independent interest, which is established for toric log Fano varieties of relative dimension at most three, hyperplane arrangements on \(\mathbb{P}^n_{\mathbb{Z}}\), as well as for general arithmetic orbifold Fano surfaces.</description><subject>Arithmetic</subject><subject>Hyperplanes</subject><subject>Hyperspaces</subject><subject>Logarithms</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNyk0KwjAQQOEgCBbtHQbcWkiTtOpaLP4sdV9SnTYptamZ1PMr4gFcvcX7JiwSUqbJRgkxYzFRyzkX-VpkmYzY6WK0H6ByY38ncD0Eg2DQNiaAq-GcED4sBV11CIXuHby0txgsEhyPq6_uXAM3Tbhg01p3hPGvc7Ys9tfdIRm8e45IoWzd6PvPKsWWc6VUmiv5n3oDJS07Vg</recordid><startdate>20240304</startdate><enddate>20240304</enddate><creator>Andreasson, Rolf</creator><creator>Berman, Robert J</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240304</creationdate><title>Sharp bounds on the height of K-semistable Fano varieties II, the log case</title><author>Andreasson, Rolf ; Berman, Robert J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_29004441643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Arithmetic</topic><topic>Hyperplanes</topic><topic>Hyperspaces</topic><topic>Logarithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Andreasson, Rolf</creatorcontrib><creatorcontrib>Berman, Robert J</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Andreasson, Rolf</au><au>Berman, Robert J</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Sharp bounds on the height of K-semistable Fano varieties II, the log case</atitle><jtitle>arXiv.org</jtitle><date>2024-03-04</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>In our previous work we conjectured - inspired by an algebro-geometric result of Fujita - that the height of an arithmetic Fano variety X of relative dimension \(n\) is maximal when X is the projective space \(\mathbb{P}^n_{\mathbb{Z}}\) over the integers, endowed with the Fubini-Study metric, if the corresponding complex Fano variety is K-semistable. In this work the conjecture is settled for diagonal hypersurfaces in \(\mathbb{P}^{n+1}_{\mathbb{Z}}\). The proof is based on a logarithmic extension of our previous conjecture, of independent interest, which is established for toric log Fano varieties of relative dimension at most three, hyperplane arrangements on \(\mathbb{P}^n_{\mathbb{Z}}\), as well as for general arithmetic orbifold Fano surfaces.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2024-03 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2900444164 |
source | Free E- Journals |
subjects | Arithmetic Hyperplanes Hyperspaces Logarithms |
title | Sharp bounds on the height of K-semistable Fano varieties II, the log case |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Sharp%20bounds%20on%20the%20height%20of%20K-semistable%20Fano%20varieties%20II,%20the%20log%20case&rft.jtitle=arXiv.org&rft.au=Andreasson,%20Rolf&rft.date=2024-03-04&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2900444164%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900444164&rft_id=info:pmid/&rfr_iscdi=true |