Kidney disease prediction using different classification techniques of machine learning

Based on the rise in chronic kidney disease (CKD) incidence in recent years, a more accurate early prediction model is required to identify high-risk individuals before they develop end-stage renal failure. To date, it has been determined that diabetes mellitus6, obesity5, and female sex4 are all si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Joshi, Deepali, Upasani, Nilam, Garad, Ritika, Said, Harsh, Visave, Rakeshkumar, Bhosale, Omkar
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page
container_title
container_volume 2981
creator Joshi, Deepali
Upasani, Nilam
Garad, Ritika
Said, Harsh
Visave, Rakeshkumar
Bhosale, Omkar
description Based on the rise in chronic kidney disease (CKD) incidence in recent years, a more accurate early prediction model is required to identify high-risk individuals before they develop end-stage renal failure. To date, it has been determined that diabetes mellitus6, obesity5, and female sex4 are all significant risk factors for chronic renal disease. Recently, several biomarkers connected to CKD have been identified. Treatment for renal failure and chronic kidney disease is both expensive and inefficient. Only around 5% of those with early CKD are aware of their illness, though20. Once CKD is detected, glomerular damage has typically reached over 50% and is irreversible. An accurate chronic renal illness prediction can be very helpful in this regard. This study aims to forecast renal failure using different classification techniques to predict the accuracy result of the algorithms and gives the result as whether a person has chronic kidney disease or not can be predicted.
doi_str_mv 10.1063/5.0182613
format Conference Proceeding
fullrecord <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2900423180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900423180</sourcerecordid><originalsourceid>FETCH-LOGICAL-p133t-c010c99c486b772c508d6857bdf22f4d90b0eb3587a174b249c5feb5eacb4fe3</originalsourceid><addsrcrecordid>eNotULtOwzAUtRBIlMLAH1hiQ0q5fsXOiCpeohJLJdgi27mmrlonxOnQvyd9TGc4Tx1C7hnMGJTiSc2AGV4ycUEmTClW6JKVl2QCUMmCS_FzTW5yXgPwSmszId-fsUm4p03MaDPSrscm-iG2ie5yTL8jEQL2mAbqNzbnGKK3R3pAv0rxb4eZtoFurV_FhHSDtk-j75ZcBbvJeHfGKVm-vizn78Xi6-1j_rwoOibEUHhg4KvKS1M6rblXYJrSKO2awHmQTQUO0AlltGVaOi4rrwI6hdY7GVBMycMptuvbw5ShXre7Po2NNa8AJBfMwKh6PKmyj8Nxfd31cWv7fc2gPvxWq_r8m_gH8_Bg0g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2900423180</pqid></control><display><type>conference_proceeding</type><title>Kidney disease prediction using different classification techniques of machine learning</title><source>AIP Journals Complete</source><creator>Joshi, Deepali ; Upasani, Nilam ; Garad, Ritika ; Said, Harsh ; Visave, Rakeshkumar ; Bhosale, Omkar</creator><contributor>Swain, Debabala ; Swain, Debabrata ; Roy, Sharmistha ; Hu, Yu-Chen</contributor><creatorcontrib>Joshi, Deepali ; Upasani, Nilam ; Garad, Ritika ; Said, Harsh ; Visave, Rakeshkumar ; Bhosale, Omkar ; Swain, Debabala ; Swain, Debabrata ; Roy, Sharmistha ; Hu, Yu-Chen</creatorcontrib><description>Based on the rise in chronic kidney disease (CKD) incidence in recent years, a more accurate early prediction model is required to identify high-risk individuals before they develop end-stage renal failure. To date, it has been determined that diabetes mellitus6, obesity5, and female sex4 are all significant risk factors for chronic renal disease. Recently, several biomarkers connected to CKD have been identified. Treatment for renal failure and chronic kidney disease is both expensive and inefficient. Only around 5% of those with early CKD are aware of their illness, though20. Once CKD is detected, glomerular damage has typically reached over 50% and is irreversible. An accurate chronic renal illness prediction can be very helpful in this regard. This study aims to forecast renal failure using different classification techniques to predict the accuracy result of the algorithms and gives the result as whether a person has chronic kidney disease or not can be predicted.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/5.0182613</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Algorithms ; Biomarkers ; Classification ; Damage detection ; Failure ; Illnesses ; Kidney diseases ; Machine learning ; Prediction models</subject><ispartof>AIP conference proceedings, 2023, Vol.2981 (1)</ispartof><rights>AIP Publishing LLC</rights><rights>2023 AIP Publishing LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/5.0182613$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,778,782,787,788,792,4500,23913,23914,25123,27907,27908,76135</link.rule.ids></links><search><contributor>Swain, Debabala</contributor><contributor>Swain, Debabrata</contributor><contributor>Roy, Sharmistha</contributor><contributor>Hu, Yu-Chen</contributor><creatorcontrib>Joshi, Deepali</creatorcontrib><creatorcontrib>Upasani, Nilam</creatorcontrib><creatorcontrib>Garad, Ritika</creatorcontrib><creatorcontrib>Said, Harsh</creatorcontrib><creatorcontrib>Visave, Rakeshkumar</creatorcontrib><creatorcontrib>Bhosale, Omkar</creatorcontrib><title>Kidney disease prediction using different classification techniques of machine learning</title><title>AIP conference proceedings</title><description>Based on the rise in chronic kidney disease (CKD) incidence in recent years, a more accurate early prediction model is required to identify high-risk individuals before they develop end-stage renal failure. To date, it has been determined that diabetes mellitus6, obesity5, and female sex4 are all significant risk factors for chronic renal disease. Recently, several biomarkers connected to CKD have been identified. Treatment for renal failure and chronic kidney disease is both expensive and inefficient. Only around 5% of those with early CKD are aware of their illness, though20. Once CKD is detected, glomerular damage has typically reached over 50% and is irreversible. An accurate chronic renal illness prediction can be very helpful in this regard. This study aims to forecast renal failure using different classification techniques to predict the accuracy result of the algorithms and gives the result as whether a person has chronic kidney disease or not can be predicted.</description><subject>Algorithms</subject><subject>Biomarkers</subject><subject>Classification</subject><subject>Damage detection</subject><subject>Failure</subject><subject>Illnesses</subject><subject>Kidney diseases</subject><subject>Machine learning</subject><subject>Prediction models</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNotULtOwzAUtRBIlMLAH1hiQ0q5fsXOiCpeohJLJdgi27mmrlonxOnQvyd9TGc4Tx1C7hnMGJTiSc2AGV4ycUEmTClW6JKVl2QCUMmCS_FzTW5yXgPwSmszId-fsUm4p03MaDPSrscm-iG2ie5yTL8jEQL2mAbqNzbnGKK3R3pAv0rxb4eZtoFurV_FhHSDtk-j75ZcBbvJeHfGKVm-vizn78Xi6-1j_rwoOibEUHhg4KvKS1M6rblXYJrSKO2awHmQTQUO0AlltGVaOi4rrwI6hdY7GVBMycMptuvbw5ShXre7Po2NNa8AJBfMwKh6PKmyj8Nxfd31cWv7fc2gPvxWq_r8m_gH8_Bg0g</recordid><startdate>20231211</startdate><enddate>20231211</enddate><creator>Joshi, Deepali</creator><creator>Upasani, Nilam</creator><creator>Garad, Ritika</creator><creator>Said, Harsh</creator><creator>Visave, Rakeshkumar</creator><creator>Bhosale, Omkar</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231211</creationdate><title>Kidney disease prediction using different classification techniques of machine learning</title><author>Joshi, Deepali ; Upasani, Nilam ; Garad, Ritika ; Said, Harsh ; Visave, Rakeshkumar ; Bhosale, Omkar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p133t-c010c99c486b772c508d6857bdf22f4d90b0eb3587a174b249c5feb5eacb4fe3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Biomarkers</topic><topic>Classification</topic><topic>Damage detection</topic><topic>Failure</topic><topic>Illnesses</topic><topic>Kidney diseases</topic><topic>Machine learning</topic><topic>Prediction models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Joshi, Deepali</creatorcontrib><creatorcontrib>Upasani, Nilam</creatorcontrib><creatorcontrib>Garad, Ritika</creatorcontrib><creatorcontrib>Said, Harsh</creatorcontrib><creatorcontrib>Visave, Rakeshkumar</creatorcontrib><creatorcontrib>Bhosale, Omkar</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Joshi, Deepali</au><au>Upasani, Nilam</au><au>Garad, Ritika</au><au>Said, Harsh</au><au>Visave, Rakeshkumar</au><au>Bhosale, Omkar</au><au>Swain, Debabala</au><au>Swain, Debabrata</au><au>Roy, Sharmistha</au><au>Hu, Yu-Chen</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Kidney disease prediction using different classification techniques of machine learning</atitle><btitle>AIP conference proceedings</btitle><date>2023-12-11</date><risdate>2023</risdate><volume>2981</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>Based on the rise in chronic kidney disease (CKD) incidence in recent years, a more accurate early prediction model is required to identify high-risk individuals before they develop end-stage renal failure. To date, it has been determined that diabetes mellitus6, obesity5, and female sex4 are all significant risk factors for chronic renal disease. Recently, several biomarkers connected to CKD have been identified. Treatment for renal failure and chronic kidney disease is both expensive and inefficient. Only around 5% of those with early CKD are aware of their illness, though20. Once CKD is detected, glomerular damage has typically reached over 50% and is irreversible. An accurate chronic renal illness prediction can be very helpful in this regard. This study aims to forecast renal failure using different classification techniques to predict the accuracy result of the algorithms and gives the result as whether a person has chronic kidney disease or not can be predicted.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/5.0182613</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0094-243X
ispartof AIP conference proceedings, 2023, Vol.2981 (1)
issn 0094-243X
1551-7616
language eng
recordid cdi_proquest_journals_2900423180
source AIP Journals Complete
subjects Algorithms
Biomarkers
Classification
Damage detection
Failure
Illnesses
Kidney diseases
Machine learning
Prediction models
title Kidney disease prediction using different classification techniques of machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T18%3A30%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Kidney%20disease%20prediction%20using%20different%20classification%20techniques%20of%20machine%20learning&rft.btitle=AIP%20conference%20proceedings&rft.au=Joshi,%20Deepali&rft.date=2023-12-11&rft.volume=2981&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/5.0182613&rft_dat=%3Cproquest_scita%3E2900423180%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900423180&rft_id=info:pmid/&rfr_iscdi=true