The life cycle of the heatwave boundary layer identified from commercial aircraft observations at Melbourne Airport (Australia)

Although undoubtedly important to the dynamics of heatwaves, the role of the boundary layer has received relatively little attention. Here, a 16‐year (2003–2018) record of commercial aircraft observations centred on Melbourne Airport (37.7°S, 144.8°E) is used to investigate the structure and evoluti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Quarterly journal of the Royal Meteorological Society 2023-10, Vol.149 (757), p.3440-3454
Hauptverfasser: Huang, Qinuo, Reeder, Michael J., Jakob, Christian, King, Malcolm J., Su, Chun‐Hsu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3454
container_issue 757
container_start_page 3440
container_title Quarterly journal of the Royal Meteorological Society
container_volume 149
creator Huang, Qinuo
Reeder, Michael J.
Jakob, Christian
King, Malcolm J.
Su, Chun‐Hsu
description Although undoubtedly important to the dynamics of heatwaves, the role of the boundary layer has received relatively little attention. Here, a 16‐year (2003–2018) record of commercial aircraft observations centred on Melbourne Airport (37.7°S, 144.8°E) is used to investigate the structure and evolution of the boundary layer during summertime heatwaves in Victoria. Composite means show that the daytime boundary layer is deeper during heatwaves than at other times, whereas the heatwave boundary layer during the night and early morning is shallower and more stable. A strong northerly nocturnal jet forms slightly below the top of the inversion, presumably transporting hotter air above the boundary layer overnight. A deep mixed layer develops rapidly after sunrise, mixing downward high‐momentum air from the nocturnal jet. For heatwaves lasting for 3 days, the nocturnal jet progressively strengthens each night. Heatwaves end in the afternoon or evening following the passage of a strong coastal front and the beginning of postfrontal cold air advection. During heatwaves, the daytime boundary layer is deep and warm; the night‐time boundary layer is shallow and capped by a stable layer. A strong nocturnal jet forms and strengthens from heatwave day 1 to day 3. A strong coastal front terminates heatwaves at Melbourne.
doi_str_mv 10.1002/qj.4566
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2900118157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900118157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2846-ee8f038560eae97d178048408fedf13873ba7af1090ff559baa2d8b0388f63c53</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKv4FwIeVGTrZL-SPZbiJxURKnhbZncnNGXbtEna0pN_3a316mlgeOadmYexSwEDARDfr2aDNMvzI9YTqZSRkvB1zHoASRYVAMUpO_N-BgCZjGWPfU-mxFujide7uiVuNQ9dZ0oYtrghXtn1okG34y3uyHHT0CIYbajh2tk5r-18Tq422HI0rnaoA7eVJ7fBYOzCcwz8jdouxS2ID41bWhf4zXDtg8PW4O05O9HYerr4q332-fgwGT1H4_enl9FwHNWxSvOISGlIVJYDIRWyEVJBqlJQmhotEiWTCiVqAQVonWVFhRg3qupGlM6TOkv67OqQu3R2tSYfytn-pm5lGXdahFAikx11faBqZ713pMulM_Pu_VJAubdbrmbl3m5H3h3IrWlp9x9Wfrz-0j_9eXvp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900118157</pqid></control><display><type>article</type><title>The life cycle of the heatwave boundary layer identified from commercial aircraft observations at Melbourne Airport (Australia)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Qinuo ; Reeder, Michael J. ; Jakob, Christian ; King, Malcolm J. ; Su, Chun‐Hsu</creator><creatorcontrib>Huang, Qinuo ; Reeder, Michael J. ; Jakob, Christian ; King, Malcolm J. ; Su, Chun‐Hsu</creatorcontrib><description>Although undoubtedly important to the dynamics of heatwaves, the role of the boundary layer has received relatively little attention. Here, a 16‐year (2003–2018) record of commercial aircraft observations centred on Melbourne Airport (37.7°S, 144.8°E) is used to investigate the structure and evolution of the boundary layer during summertime heatwaves in Victoria. Composite means show that the daytime boundary layer is deeper during heatwaves than at other times, whereas the heatwave boundary layer during the night and early morning is shallower and more stable. A strong northerly nocturnal jet forms slightly below the top of the inversion, presumably transporting hotter air above the boundary layer overnight. A deep mixed layer develops rapidly after sunrise, mixing downward high‐momentum air from the nocturnal jet. For heatwaves lasting for 3 days, the nocturnal jet progressively strengthens each night. Heatwaves end in the afternoon or evening following the passage of a strong coastal front and the beginning of postfrontal cold air advection. During heatwaves, the daytime boundary layer is deep and warm; the night‐time boundary layer is shallow and capped by a stable layer. A strong nocturnal jet forms and strengthens from heatwave day 1 to day 3. A strong coastal front terminates heatwaves at Melbourne.</description><identifier>ISSN: 0035-9009</identifier><identifier>EISSN: 1477-870X</identifier><identifier>DOI: 10.1002/qj.4566</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Advection ; Air ; Aircraft ; Aircraft observations ; Airports ; AMDAR ; boundary layer ; Boundary layer evolution ; Boundary layers ; Coastal fronts ; Commercial aircraft ; Heat waves ; heatwave ; Heatwaves ; Life cycle ; Life cycles ; Mixed layer ; Momentum ; Nighttime ; Sunrise</subject><ispartof>Quarterly journal of the Royal Meteorological Society, 2023-10, Vol.149 (757), p.3440-3454</ispartof><rights>2023 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley &amp; Sons Ltd on behalf of the Royal Meteorological Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2846-ee8f038560eae97d178048408fedf13873ba7af1090ff559baa2d8b0388f63c53</cites><orcidid>0000-0001-6487-3458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqj.4566$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqj.4566$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Huang, Qinuo</creatorcontrib><creatorcontrib>Reeder, Michael J.</creatorcontrib><creatorcontrib>Jakob, Christian</creatorcontrib><creatorcontrib>King, Malcolm J.</creatorcontrib><creatorcontrib>Su, Chun‐Hsu</creatorcontrib><title>The life cycle of the heatwave boundary layer identified from commercial aircraft observations at Melbourne Airport (Australia)</title><title>Quarterly journal of the Royal Meteorological Society</title><description>Although undoubtedly important to the dynamics of heatwaves, the role of the boundary layer has received relatively little attention. Here, a 16‐year (2003–2018) record of commercial aircraft observations centred on Melbourne Airport (37.7°S, 144.8°E) is used to investigate the structure and evolution of the boundary layer during summertime heatwaves in Victoria. Composite means show that the daytime boundary layer is deeper during heatwaves than at other times, whereas the heatwave boundary layer during the night and early morning is shallower and more stable. A strong northerly nocturnal jet forms slightly below the top of the inversion, presumably transporting hotter air above the boundary layer overnight. A deep mixed layer develops rapidly after sunrise, mixing downward high‐momentum air from the nocturnal jet. For heatwaves lasting for 3 days, the nocturnal jet progressively strengthens each night. Heatwaves end in the afternoon or evening following the passage of a strong coastal front and the beginning of postfrontal cold air advection. During heatwaves, the daytime boundary layer is deep and warm; the night‐time boundary layer is shallow and capped by a stable layer. A strong nocturnal jet forms and strengthens from heatwave day 1 to day 3. A strong coastal front terminates heatwaves at Melbourne.</description><subject>Advection</subject><subject>Air</subject><subject>Aircraft</subject><subject>Aircraft observations</subject><subject>Airports</subject><subject>AMDAR</subject><subject>boundary layer</subject><subject>Boundary layer evolution</subject><subject>Boundary layers</subject><subject>Coastal fronts</subject><subject>Commercial aircraft</subject><subject>Heat waves</subject><subject>heatwave</subject><subject>Heatwaves</subject><subject>Life cycle</subject><subject>Life cycles</subject><subject>Mixed layer</subject><subject>Momentum</subject><subject>Nighttime</subject><subject>Sunrise</subject><issn>0035-9009</issn><issn>1477-870X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kE1LAzEQhoMoWKv4FwIeVGTrZL-SPZbiJxURKnhbZncnNGXbtEna0pN_3a316mlgeOadmYexSwEDARDfr2aDNMvzI9YTqZSRkvB1zHoASRYVAMUpO_N-BgCZjGWPfU-mxFujide7uiVuNQ9dZ0oYtrghXtn1okG34y3uyHHT0CIYbajh2tk5r-18Tq422HI0rnaoA7eVJ7fBYOzCcwz8jdouxS2ID41bWhf4zXDtg8PW4O05O9HYerr4q332-fgwGT1H4_enl9FwHNWxSvOISGlIVJYDIRWyEVJBqlJQmhotEiWTCiVqAQVonWVFhRg3qupGlM6TOkv67OqQu3R2tSYfytn-pm5lGXdahFAikx11faBqZ713pMulM_Pu_VJAubdbrmbl3m5H3h3IrWlp9x9Wfrz-0j_9eXvp</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Huang, Qinuo</creator><creator>Reeder, Michael J.</creator><creator>Jakob, Christian</creator><creator>King, Malcolm J.</creator><creator>Su, Chun‐Hsu</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-6487-3458</orcidid></search><sort><creationdate>202310</creationdate><title>The life cycle of the heatwave boundary layer identified from commercial aircraft observations at Melbourne Airport (Australia)</title><author>Huang, Qinuo ; Reeder, Michael J. ; Jakob, Christian ; King, Malcolm J. ; Su, Chun‐Hsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2846-ee8f038560eae97d178048408fedf13873ba7af1090ff559baa2d8b0388f63c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advection</topic><topic>Air</topic><topic>Aircraft</topic><topic>Aircraft observations</topic><topic>Airports</topic><topic>AMDAR</topic><topic>boundary layer</topic><topic>Boundary layer evolution</topic><topic>Boundary layers</topic><topic>Coastal fronts</topic><topic>Commercial aircraft</topic><topic>Heat waves</topic><topic>heatwave</topic><topic>Heatwaves</topic><topic>Life cycle</topic><topic>Life cycles</topic><topic>Mixed layer</topic><topic>Momentum</topic><topic>Nighttime</topic><topic>Sunrise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Qinuo</creatorcontrib><creatorcontrib>Reeder, Michael J.</creatorcontrib><creatorcontrib>Jakob, Christian</creatorcontrib><creatorcontrib>King, Malcolm J.</creatorcontrib><creatorcontrib>Su, Chun‐Hsu</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Qinuo</au><au>Reeder, Michael J.</au><au>Jakob, Christian</au><au>King, Malcolm J.</au><au>Su, Chun‐Hsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The life cycle of the heatwave boundary layer identified from commercial aircraft observations at Melbourne Airport (Australia)</atitle><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle><date>2023-10</date><risdate>2023</risdate><volume>149</volume><issue>757</issue><spage>3440</spage><epage>3454</epage><pages>3440-3454</pages><issn>0035-9009</issn><eissn>1477-870X</eissn><abstract>Although undoubtedly important to the dynamics of heatwaves, the role of the boundary layer has received relatively little attention. Here, a 16‐year (2003–2018) record of commercial aircraft observations centred on Melbourne Airport (37.7°S, 144.8°E) is used to investigate the structure and evolution of the boundary layer during summertime heatwaves in Victoria. Composite means show that the daytime boundary layer is deeper during heatwaves than at other times, whereas the heatwave boundary layer during the night and early morning is shallower and more stable. A strong northerly nocturnal jet forms slightly below the top of the inversion, presumably transporting hotter air above the boundary layer overnight. A deep mixed layer develops rapidly after sunrise, mixing downward high‐momentum air from the nocturnal jet. For heatwaves lasting for 3 days, the nocturnal jet progressively strengthens each night. Heatwaves end in the afternoon or evening following the passage of a strong coastal front and the beginning of postfrontal cold air advection. During heatwaves, the daytime boundary layer is deep and warm; the night‐time boundary layer is shallow and capped by a stable layer. A strong nocturnal jet forms and strengthens from heatwave day 1 to day 3. A strong coastal front terminates heatwaves at Melbourne.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><doi>10.1002/qj.4566</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6487-3458</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0035-9009
ispartof Quarterly journal of the Royal Meteorological Society, 2023-10, Vol.149 (757), p.3440-3454
issn 0035-9009
1477-870X
language eng
recordid cdi_proquest_journals_2900118157
source Wiley Online Library Journals Frontfile Complete
subjects Advection
Air
Aircraft
Aircraft observations
Airports
AMDAR
boundary layer
Boundary layer evolution
Boundary layers
Coastal fronts
Commercial aircraft
Heat waves
heatwave
Heatwaves
Life cycle
Life cycles
Mixed layer
Momentum
Nighttime
Sunrise
title The life cycle of the heatwave boundary layer identified from commercial aircraft observations at Melbourne Airport (Australia)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20life%20cycle%20of%20the%20heatwave%20boundary%20layer%20identified%20from%20commercial%20aircraft%20observations%20at%20Melbourne%20Airport%20(Australia)&rft.jtitle=Quarterly%20journal%20of%20the%20Royal%20Meteorological%20Society&rft.au=Huang,%20Qinuo&rft.date=2023-10&rft.volume=149&rft.issue=757&rft.spage=3440&rft.epage=3454&rft.pages=3440-3454&rft.issn=0035-9009&rft.eissn=1477-870X&rft_id=info:doi/10.1002/qj.4566&rft_dat=%3Cproquest_cross%3E2900118157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900118157&rft_id=info:pmid/&rfr_iscdi=true