The life cycle of the heatwave boundary layer identified from commercial aircraft observations at Melbourne Airport (Australia)
Although undoubtedly important to the dynamics of heatwaves, the role of the boundary layer has received relatively little attention. Here, a 16‐year (2003–2018) record of commercial aircraft observations centred on Melbourne Airport (37.7°S, 144.8°E) is used to investigate the structure and evoluti...
Gespeichert in:
Veröffentlicht in: | Quarterly journal of the Royal Meteorological Society 2023-10, Vol.149 (757), p.3440-3454 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3454 |
---|---|
container_issue | 757 |
container_start_page | 3440 |
container_title | Quarterly journal of the Royal Meteorological Society |
container_volume | 149 |
creator | Huang, Qinuo Reeder, Michael J. Jakob, Christian King, Malcolm J. Su, Chun‐Hsu |
description | Although undoubtedly important to the dynamics of heatwaves, the role of the boundary layer has received relatively little attention. Here, a 16‐year (2003–2018) record of commercial aircraft observations centred on Melbourne Airport (37.7°S, 144.8°E) is used to investigate the structure and evolution of the boundary layer during summertime heatwaves in Victoria. Composite means show that the daytime boundary layer is deeper during heatwaves than at other times, whereas the heatwave boundary layer during the night and early morning is shallower and more stable. A strong northerly nocturnal jet forms slightly below the top of the inversion, presumably transporting hotter air above the boundary layer overnight. A deep mixed layer develops rapidly after sunrise, mixing downward high‐momentum air from the nocturnal jet. For heatwaves lasting for 3 days, the nocturnal jet progressively strengthens each night. Heatwaves end in the afternoon or evening following the passage of a strong coastal front and the beginning of postfrontal cold air advection.
During heatwaves, the daytime boundary layer is deep and warm; the night‐time boundary layer is shallow and capped by a stable layer. A strong nocturnal jet forms and strengthens from heatwave day 1 to day 3. A strong coastal front terminates heatwaves at Melbourne. |
doi_str_mv | 10.1002/qj.4566 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2900118157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900118157</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2846-ee8f038560eae97d178048408fedf13873ba7af1090ff559baa2d8b0388f63c53</originalsourceid><addsrcrecordid>eNp1kE1LAzEQhoMoWKv4FwIeVGTrZL-SPZbiJxURKnhbZncnNGXbtEna0pN_3a316mlgeOadmYexSwEDARDfr2aDNMvzI9YTqZSRkvB1zHoASRYVAMUpO_N-BgCZjGWPfU-mxFujide7uiVuNQ9dZ0oYtrghXtn1okG34y3uyHHT0CIYbajh2tk5r-18Tq422HI0rnaoA7eVJ7fBYOzCcwz8jdouxS2ID41bWhf4zXDtg8PW4O05O9HYerr4q332-fgwGT1H4_enl9FwHNWxSvOISGlIVJYDIRWyEVJBqlJQmhotEiWTCiVqAQVonWVFhRg3qupGlM6TOkv67OqQu3R2tSYfytn-pm5lGXdahFAikx11faBqZ713pMulM_Pu_VJAubdbrmbl3m5H3h3IrWlp9x9Wfrz-0j_9eXvp</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900118157</pqid></control><display><type>article</type><title>The life cycle of the heatwave boundary layer identified from commercial aircraft observations at Melbourne Airport (Australia)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Huang, Qinuo ; Reeder, Michael J. ; Jakob, Christian ; King, Malcolm J. ; Su, Chun‐Hsu</creator><creatorcontrib>Huang, Qinuo ; Reeder, Michael J. ; Jakob, Christian ; King, Malcolm J. ; Su, Chun‐Hsu</creatorcontrib><description>Although undoubtedly important to the dynamics of heatwaves, the role of the boundary layer has received relatively little attention. Here, a 16‐year (2003–2018) record of commercial aircraft observations centred on Melbourne Airport (37.7°S, 144.8°E) is used to investigate the structure and evolution of the boundary layer during summertime heatwaves in Victoria. Composite means show that the daytime boundary layer is deeper during heatwaves than at other times, whereas the heatwave boundary layer during the night and early morning is shallower and more stable. A strong northerly nocturnal jet forms slightly below the top of the inversion, presumably transporting hotter air above the boundary layer overnight. A deep mixed layer develops rapidly after sunrise, mixing downward high‐momentum air from the nocturnal jet. For heatwaves lasting for 3 days, the nocturnal jet progressively strengthens each night. Heatwaves end in the afternoon or evening following the passage of a strong coastal front and the beginning of postfrontal cold air advection.
During heatwaves, the daytime boundary layer is deep and warm; the night‐time boundary layer is shallow and capped by a stable layer. A strong nocturnal jet forms and strengthens from heatwave day 1 to day 3. A strong coastal front terminates heatwaves at Melbourne.</description><identifier>ISSN: 0035-9009</identifier><identifier>EISSN: 1477-870X</identifier><identifier>DOI: 10.1002/qj.4566</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Advection ; Air ; Aircraft ; Aircraft observations ; Airports ; AMDAR ; boundary layer ; Boundary layer evolution ; Boundary layers ; Coastal fronts ; Commercial aircraft ; Heat waves ; heatwave ; Heatwaves ; Life cycle ; Life cycles ; Mixed layer ; Momentum ; Nighttime ; Sunrise</subject><ispartof>Quarterly journal of the Royal Meteorological Society, 2023-10, Vol.149 (757), p.3440-3454</ispartof><rights>2023 The Authors. Quarterly Journal of the Royal Meteorological Society published by John Wiley & Sons Ltd on behalf of the Royal Meteorological Society.</rights><rights>2023. This article is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2846-ee8f038560eae97d178048408fedf13873ba7af1090ff559baa2d8b0388f63c53</cites><orcidid>0000-0001-6487-3458</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fqj.4566$$EPDF$$P50$$Gwiley$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fqj.4566$$EHTML$$P50$$Gwiley$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Huang, Qinuo</creatorcontrib><creatorcontrib>Reeder, Michael J.</creatorcontrib><creatorcontrib>Jakob, Christian</creatorcontrib><creatorcontrib>King, Malcolm J.</creatorcontrib><creatorcontrib>Su, Chun‐Hsu</creatorcontrib><title>The life cycle of the heatwave boundary layer identified from commercial aircraft observations at Melbourne Airport (Australia)</title><title>Quarterly journal of the Royal Meteorological Society</title><description>Although undoubtedly important to the dynamics of heatwaves, the role of the boundary layer has received relatively little attention. Here, a 16‐year (2003–2018) record of commercial aircraft observations centred on Melbourne Airport (37.7°S, 144.8°E) is used to investigate the structure and evolution of the boundary layer during summertime heatwaves in Victoria. Composite means show that the daytime boundary layer is deeper during heatwaves than at other times, whereas the heatwave boundary layer during the night and early morning is shallower and more stable. A strong northerly nocturnal jet forms slightly below the top of the inversion, presumably transporting hotter air above the boundary layer overnight. A deep mixed layer develops rapidly after sunrise, mixing downward high‐momentum air from the nocturnal jet. For heatwaves lasting for 3 days, the nocturnal jet progressively strengthens each night. Heatwaves end in the afternoon or evening following the passage of a strong coastal front and the beginning of postfrontal cold air advection.
During heatwaves, the daytime boundary layer is deep and warm; the night‐time boundary layer is shallow and capped by a stable layer. A strong nocturnal jet forms and strengthens from heatwave day 1 to day 3. A strong coastal front terminates heatwaves at Melbourne.</description><subject>Advection</subject><subject>Air</subject><subject>Aircraft</subject><subject>Aircraft observations</subject><subject>Airports</subject><subject>AMDAR</subject><subject>boundary layer</subject><subject>Boundary layer evolution</subject><subject>Boundary layers</subject><subject>Coastal fronts</subject><subject>Commercial aircraft</subject><subject>Heat waves</subject><subject>heatwave</subject><subject>Heatwaves</subject><subject>Life cycle</subject><subject>Life cycles</subject><subject>Mixed layer</subject><subject>Momentum</subject><subject>Nighttime</subject><subject>Sunrise</subject><issn>0035-9009</issn><issn>1477-870X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>24P</sourceid><recordid>eNp1kE1LAzEQhoMoWKv4FwIeVGTrZL-SPZbiJxURKnhbZncnNGXbtEna0pN_3a316mlgeOadmYexSwEDARDfr2aDNMvzI9YTqZSRkvB1zHoASRYVAMUpO_N-BgCZjGWPfU-mxFujide7uiVuNQ9dZ0oYtrghXtn1okG34y3uyHHT0CIYbajh2tk5r-18Tq422HI0rnaoA7eVJ7fBYOzCcwz8jdouxS2ID41bWhf4zXDtg8PW4O05O9HYerr4q332-fgwGT1H4_enl9FwHNWxSvOISGlIVJYDIRWyEVJBqlJQmhotEiWTCiVqAQVonWVFhRg3qupGlM6TOkv67OqQu3R2tSYfytn-pm5lGXdahFAikx11faBqZ713pMulM_Pu_VJAubdbrmbl3m5H3h3IrWlp9x9Wfrz-0j_9eXvp</recordid><startdate>202310</startdate><enddate>202310</enddate><creator>Huang, Qinuo</creator><creator>Reeder, Michael J.</creator><creator>Jakob, Christian</creator><creator>King, Malcolm J.</creator><creator>Su, Chun‐Hsu</creator><general>John Wiley & Sons, Ltd</general><general>Wiley Subscription Services, Inc</general><scope>24P</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>7TN</scope><scope>F1W</scope><scope>H96</scope><scope>KL.</scope><scope>L.G</scope><orcidid>https://orcid.org/0000-0001-6487-3458</orcidid></search><sort><creationdate>202310</creationdate><title>The life cycle of the heatwave boundary layer identified from commercial aircraft observations at Melbourne Airport (Australia)</title><author>Huang, Qinuo ; Reeder, Michael J. ; Jakob, Christian ; King, Malcolm J. ; Su, Chun‐Hsu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2846-ee8f038560eae97d178048408fedf13873ba7af1090ff559baa2d8b0388f63c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Advection</topic><topic>Air</topic><topic>Aircraft</topic><topic>Aircraft observations</topic><topic>Airports</topic><topic>AMDAR</topic><topic>boundary layer</topic><topic>Boundary layer evolution</topic><topic>Boundary layers</topic><topic>Coastal fronts</topic><topic>Commercial aircraft</topic><topic>Heat waves</topic><topic>heatwave</topic><topic>Heatwaves</topic><topic>Life cycle</topic><topic>Life cycles</topic><topic>Mixed layer</topic><topic>Momentum</topic><topic>Nighttime</topic><topic>Sunrise</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Qinuo</creatorcontrib><creatorcontrib>Reeder, Michael J.</creatorcontrib><creatorcontrib>Jakob, Christian</creatorcontrib><creatorcontrib>King, Malcolm J.</creatorcontrib><creatorcontrib>Su, Chun‐Hsu</creatorcontrib><collection>Wiley Online Library Open Access</collection><collection>CrossRef</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Qinuo</au><au>Reeder, Michael J.</au><au>Jakob, Christian</au><au>King, Malcolm J.</au><au>Su, Chun‐Hsu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The life cycle of the heatwave boundary layer identified from commercial aircraft observations at Melbourne Airport (Australia)</atitle><jtitle>Quarterly journal of the Royal Meteorological Society</jtitle><date>2023-10</date><risdate>2023</risdate><volume>149</volume><issue>757</issue><spage>3440</spage><epage>3454</epage><pages>3440-3454</pages><issn>0035-9009</issn><eissn>1477-870X</eissn><abstract>Although undoubtedly important to the dynamics of heatwaves, the role of the boundary layer has received relatively little attention. Here, a 16‐year (2003–2018) record of commercial aircraft observations centred on Melbourne Airport (37.7°S, 144.8°E) is used to investigate the structure and evolution of the boundary layer during summertime heatwaves in Victoria. Composite means show that the daytime boundary layer is deeper during heatwaves than at other times, whereas the heatwave boundary layer during the night and early morning is shallower and more stable. A strong northerly nocturnal jet forms slightly below the top of the inversion, presumably transporting hotter air above the boundary layer overnight. A deep mixed layer develops rapidly after sunrise, mixing downward high‐momentum air from the nocturnal jet. For heatwaves lasting for 3 days, the nocturnal jet progressively strengthens each night. Heatwaves end in the afternoon or evening following the passage of a strong coastal front and the beginning of postfrontal cold air advection.
During heatwaves, the daytime boundary layer is deep and warm; the night‐time boundary layer is shallow and capped by a stable layer. A strong nocturnal jet forms and strengthens from heatwave day 1 to day 3. A strong coastal front terminates heatwaves at Melbourne.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><doi>10.1002/qj.4566</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0001-6487-3458</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0035-9009 |
ispartof | Quarterly journal of the Royal Meteorological Society, 2023-10, Vol.149 (757), p.3440-3454 |
issn | 0035-9009 1477-870X |
language | eng |
recordid | cdi_proquest_journals_2900118157 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Advection Air Aircraft Aircraft observations Airports AMDAR boundary layer Boundary layer evolution Boundary layers Coastal fronts Commercial aircraft Heat waves heatwave Heatwaves Life cycle Life cycles Mixed layer Momentum Nighttime Sunrise |
title | The life cycle of the heatwave boundary layer identified from commercial aircraft observations at Melbourne Airport (Australia) |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T03%3A29%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20life%20cycle%20of%20the%20heatwave%20boundary%20layer%20identified%20from%20commercial%20aircraft%20observations%20at%20Melbourne%20Airport%20(Australia)&rft.jtitle=Quarterly%20journal%20of%20the%20Royal%20Meteorological%20Society&rft.au=Huang,%20Qinuo&rft.date=2023-10&rft.volume=149&rft.issue=757&rft.spage=3440&rft.epage=3454&rft.pages=3440-3454&rft.issn=0035-9009&rft.eissn=1477-870X&rft_id=info:doi/10.1002/qj.4566&rft_dat=%3Cproquest_cross%3E2900118157%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900118157&rft_id=info:pmid/&rfr_iscdi=true |