Adaptive critic control with multi‐step policy evaluation for nonlinear zero‐sum games

To attenuate the effect of disturbances on control performance, a multi‐step adaptive critic control (MsACC) framework is developed to solve zero‐sum games for discrete‐time nonlinear systems. The MsACC algorithm utilizes multi‐step policy evaluation to obtain the solution of the Hamilton–Jacobi–Isa...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of robust and nonlinear control 2024-01, Vol.34 (1), p.551-566
Hauptverfasser: Li, Xin, Wang, Ding, Wang, Jiangyu, Qiao, Junfei
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 566
container_issue 1
container_start_page 551
container_title International journal of robust and nonlinear control
container_volume 34
creator Li, Xin
Wang, Ding
Wang, Jiangyu
Qiao, Junfei
description To attenuate the effect of disturbances on control performance, a multi‐step adaptive critic control (MsACC) framework is developed to solve zero‐sum games for discrete‐time nonlinear systems. The MsACC algorithm utilizes multi‐step policy evaluation to obtain the solution of the Hamilton–Jacobi–Isaac equation, which is faster than that of the one‐step policy evaluation. The convergence rate of the MsACC algorithm is adjustable by varying the step size of the policy evaluation. In addition, the stability and convergence of the MsACC algorithm are proved under certain conditions. In order to realize the MsACC algorithm, three neural networks are established to approximate the control input, the disturbance input, and the cost function, respectively. Finally, the effectiveness of the MsACC algorithm is verified by two simulation examples, including a linear system and a nonlinear plant.
doi_str_mv 10.1002/rnc.6984
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2900112449</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900112449</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-afda5ed73ad3183d58c4701ba3f9314a1f6d15c20cfaf64fbee233681a1ecb1a3</originalsourceid><addsrcrecordid>eNotkM1KAzEUhYMoWKvgIwTcuJmam2Smk2Up_kHBjW7cDLeZRFNmJmOSqdSVj-Az-iROqat74H6cAx8hl8BmwBi_CZ2eFaqUR2QCTKkMuFDH-yxVViouTslZjBvGxh-XE_K6qLFPbmuoDi45TbXvUvAN_XTpnbZDk9zv909Mpqe9b5zeUbPFZsDkfEetD7TzXeM6g4F-meD37NDSN2xNPCcnFptoLv7vlLzc3T4vH7LV0_3jcrHKNM_zlKGtMTf1XGAtoBR1Xmo5Z7BGYZUAiWCLGnLNmbZoC2nXxnAhihIQjF4Diim5OvT2wX8MJqZq44fQjZMVV4wBcCnVSF0fKB18jMHYqg-uxbCrgFV7c9VortqbE39JiWUI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900112449</pqid></control><display><type>article</type><title>Adaptive critic control with multi‐step policy evaluation for nonlinear zero‐sum games</title><source>Access via Wiley Online Library</source><creator>Li, Xin ; Wang, Ding ; Wang, Jiangyu ; Qiao, Junfei</creator><creatorcontrib>Li, Xin ; Wang, Ding ; Wang, Jiangyu ; Qiao, Junfei</creatorcontrib><description>To attenuate the effect of disturbances on control performance, a multi‐step adaptive critic control (MsACC) framework is developed to solve zero‐sum games for discrete‐time nonlinear systems. The MsACC algorithm utilizes multi‐step policy evaluation to obtain the solution of the Hamilton–Jacobi–Isaac equation, which is faster than that of the one‐step policy evaluation. The convergence rate of the MsACC algorithm is adjustable by varying the step size of the policy evaluation. In addition, the stability and convergence of the MsACC algorithm are proved under certain conditions. In order to realize the MsACC algorithm, three neural networks are established to approximate the control input, the disturbance input, and the cost function, respectively. Finally, the effectiveness of the MsACC algorithm is verified by two simulation examples, including a linear system and a nonlinear plant.</description><identifier>ISSN: 1049-8923</identifier><identifier>EISSN: 1099-1239</identifier><identifier>DOI: 10.1002/rnc.6984</identifier><language>eng</language><publisher>Bognor Regis: Wiley Subscription Services, Inc</publisher><subject>Adaptive control ; Algorithms ; Convergence ; Cost function ; Discrete time systems ; Games ; Neural networks ; Nonlinear systems ; Stability analysis ; Sums</subject><ispartof>International journal of robust and nonlinear control, 2024-01, Vol.34 (1), p.551-566</ispartof><rights>2024 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-afda5ed73ad3183d58c4701ba3f9314a1f6d15c20cfaf64fbee233681a1ecb1a3</citedby><cites>FETCH-LOGICAL-c255t-afda5ed73ad3183d58c4701ba3f9314a1f6d15c20cfaf64fbee233681a1ecb1a3</cites><orcidid>0000-0002-7149-5712 ; 0000-0001-9652-3364</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wang, Ding</creatorcontrib><creatorcontrib>Wang, Jiangyu</creatorcontrib><creatorcontrib>Qiao, Junfei</creatorcontrib><title>Adaptive critic control with multi‐step policy evaluation for nonlinear zero‐sum games</title><title>International journal of robust and nonlinear control</title><description>To attenuate the effect of disturbances on control performance, a multi‐step adaptive critic control (MsACC) framework is developed to solve zero‐sum games for discrete‐time nonlinear systems. The MsACC algorithm utilizes multi‐step policy evaluation to obtain the solution of the Hamilton–Jacobi–Isaac equation, which is faster than that of the one‐step policy evaluation. The convergence rate of the MsACC algorithm is adjustable by varying the step size of the policy evaluation. In addition, the stability and convergence of the MsACC algorithm are proved under certain conditions. In order to realize the MsACC algorithm, three neural networks are established to approximate the control input, the disturbance input, and the cost function, respectively. Finally, the effectiveness of the MsACC algorithm is verified by two simulation examples, including a linear system and a nonlinear plant.</description><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Convergence</subject><subject>Cost function</subject><subject>Discrete time systems</subject><subject>Games</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Stability analysis</subject><subject>Sums</subject><issn>1049-8923</issn><issn>1099-1239</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNotkM1KAzEUhYMoWKvgIwTcuJmam2Smk2Up_kHBjW7cDLeZRFNmJmOSqdSVj-Az-iROqat74H6cAx8hl8BmwBi_CZ2eFaqUR2QCTKkMuFDH-yxVViouTslZjBvGxh-XE_K6qLFPbmuoDi45TbXvUvAN_XTpnbZDk9zv909Mpqe9b5zeUbPFZsDkfEetD7TzXeM6g4F-meD37NDSN2xNPCcnFptoLv7vlLzc3T4vH7LV0_3jcrHKNM_zlKGtMTf1XGAtoBR1Xmo5Z7BGYZUAiWCLGnLNmbZoC2nXxnAhihIQjF4Diim5OvT2wX8MJqZq44fQjZMVV4wBcCnVSF0fKB18jMHYqg-uxbCrgFV7c9VortqbE39JiWUI</recordid><startdate>20240110</startdate><enddate>20240110</enddate><creator>Li, Xin</creator><creator>Wang, Ding</creator><creator>Wang, Jiangyu</creator><creator>Qiao, Junfei</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-7149-5712</orcidid><orcidid>https://orcid.org/0000-0001-9652-3364</orcidid></search><sort><creationdate>20240110</creationdate><title>Adaptive critic control with multi‐step policy evaluation for nonlinear zero‐sum games</title><author>Li, Xin ; Wang, Ding ; Wang, Jiangyu ; Qiao, Junfei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-afda5ed73ad3183d58c4701ba3f9314a1f6d15c20cfaf64fbee233681a1ecb1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Convergence</topic><topic>Cost function</topic><topic>Discrete time systems</topic><topic>Games</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Stability analysis</topic><topic>Sums</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xin</creatorcontrib><creatorcontrib>Wang, Ding</creatorcontrib><creatorcontrib>Wang, Jiangyu</creatorcontrib><creatorcontrib>Qiao, Junfei</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of robust and nonlinear control</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xin</au><au>Wang, Ding</au><au>Wang, Jiangyu</au><au>Qiao, Junfei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive critic control with multi‐step policy evaluation for nonlinear zero‐sum games</atitle><jtitle>International journal of robust and nonlinear control</jtitle><date>2024-01-10</date><risdate>2024</risdate><volume>34</volume><issue>1</issue><spage>551</spage><epage>566</epage><pages>551-566</pages><issn>1049-8923</issn><eissn>1099-1239</eissn><abstract>To attenuate the effect of disturbances on control performance, a multi‐step adaptive critic control (MsACC) framework is developed to solve zero‐sum games for discrete‐time nonlinear systems. The MsACC algorithm utilizes multi‐step policy evaluation to obtain the solution of the Hamilton–Jacobi–Isaac equation, which is faster than that of the one‐step policy evaluation. The convergence rate of the MsACC algorithm is adjustable by varying the step size of the policy evaluation. In addition, the stability and convergence of the MsACC algorithm are proved under certain conditions. In order to realize the MsACC algorithm, three neural networks are established to approximate the control input, the disturbance input, and the cost function, respectively. Finally, the effectiveness of the MsACC algorithm is verified by two simulation examples, including a linear system and a nonlinear plant.</abstract><cop>Bognor Regis</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/rnc.6984</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-7149-5712</orcidid><orcidid>https://orcid.org/0000-0001-9652-3364</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1049-8923
ispartof International journal of robust and nonlinear control, 2024-01, Vol.34 (1), p.551-566
issn 1049-8923
1099-1239
language eng
recordid cdi_proquest_journals_2900112449
source Access via Wiley Online Library
subjects Adaptive control
Algorithms
Convergence
Cost function
Discrete time systems
Games
Neural networks
Nonlinear systems
Stability analysis
Sums
title Adaptive critic control with multi‐step policy evaluation for nonlinear zero‐sum games
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A20%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20critic%20control%20with%20multi%E2%80%90step%20policy%20evaluation%20for%20nonlinear%20zero%E2%80%90sum%20games&rft.jtitle=International%20journal%20of%20robust%20and%20nonlinear%20control&rft.au=Li,%20Xin&rft.date=2024-01-10&rft.volume=34&rft.issue=1&rft.spage=551&rft.epage=566&rft.pages=551-566&rft.issn=1049-8923&rft.eissn=1099-1239&rft_id=info:doi/10.1002/rnc.6984&rft_dat=%3Cproquest_cross%3E2900112449%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900112449&rft_id=info:pmid/&rfr_iscdi=true