Integration of Highly Graphitic Three-Dimensionally Ordered Macroporous Carbon Microspheres with Hollow Metal Oxide Nanospheres for Ultrafast and Durable Lithium-Ion Storage

Achieving excellent electrochemical performance at high charging rate has been a long-cherished dream in the field of lithium-ion batteries (LIBs). As a part of the efforts to meet the goal, an innovative strategy for the synthesis of 3D porous highly graphitic carbon microspheres, to which numerous...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of energy research 2023-12, Vol.2023, p.1-23
Hauptverfasser: Yang, Soo Young, Park, Jin-Sung, Koo, Hye Young, Kang, Yun Chan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23
container_issue
container_start_page 1
container_title International journal of energy research
container_volume 2023
creator Yang, Soo Young
Park, Jin-Sung
Koo, Hye Young
Kang, Yun Chan
description Achieving excellent electrochemical performance at high charging rate has been a long-cherished dream in the field of lithium-ion batteries (LIBs). As a part of the efforts to meet the goal, an innovative strategy for the synthesis of 3D porous highly graphitic carbon microspheres, to which numerous hollow metal oxide nanospheres are anchored, for use as anode in LIBs is introduced. Hollow carbon nanosphere-aggregated microspheres prepared from the spray drying process are graphitized with the aid of metal catalysts, and subsequent oxidation selectively removed amorphous carbon, leading to the formation of highly conductive graphitic carbon matrix. Numerous hollow metal oxide nanospheres formed simultaneously during the oxidation process via nanoscale Kirkendall diffusion are anchored onto the carbonaceous matrix, effectively reinforcing the structural integrity by alleviating volume changes and reducing lithium-ion diffusion lengths. The synergistic effect of combining hollow metal oxide nanospheres with high theoretical capacity with conductive carbon matrix led to accelerated electrochemical kinetics, resulting in high capacity at high charging rate. In addition, trapping the hollow metal oxide nanospheres inside hollow carbon nanospheres could effectively alleviate the volume changes, which led to high structural stability. When applied as LIB anodes, the microspheres exhibit a capacity of 411 mA h g−1 after 2500 cycles at 10.0 A g−1, with ~80% capacity retention. The anode exhibits a high capacity of 274 mA h g−1 at an extremely high current density of 50.0 A g−1, thus demonstrating the structural merits of the microspheres.
doi_str_mv 10.1155/2023/9881400
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2900109792</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2900109792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-3649b6d36e03db5215c93d924c6656bc36960da9be1305455b2c28366a7c0fa23</originalsourceid><addsrcrecordid>eNp9kU9P4zAQxS3ESltYbvsBLHFcAv6TuPVxVVhaqd0eAIlbNImdxiiNw9hRlw_Fd8RVEcc9jTTvN0968wj5ydk150VxI5iQN3o24zljJ2TCmdYZ5_nzKZkwqWSm2fT5OzkL4YWxpPHphLwv-2i3CNH5nvqGLty27d7oPcLQuuhq-tiitdmt29k-JAa6pG7QWLSGrqFGP3j0Y6BzwCpZrF1ahaFNeqB7F1u68F3n93RtI3R0888ZS_9C_8U0HulTFxEaCJFCb-jtiFB1lq7StRt32TLZPkSPsLU_yLcGumAvPuc5efpz9zhfZKvN_XL-e5XVQucxkyrXlTJSWSZNVQhe1FoaLfJaqUJVtVRaMQO6slyyIi-KStRiJpWCac0aEPKcXB59B_Svow2xfPEjpvChFJqx9NipPlBXR-oQOaBtygHdDvCt5Kw8FFIeCik_C0n4ryPeut7A3v2f_gBAxo1Z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2900109792</pqid></control><display><type>article</type><title>Integration of Highly Graphitic Three-Dimensionally Ordered Macroporous Carbon Microspheres with Hollow Metal Oxide Nanospheres for Ultrafast and Durable Lithium-Ion Storage</title><source>Wiley Online Library Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Alma/SFX Local Collection</source><source>ProQuest Central</source><creator>Yang, Soo Young ; Park, Jin-Sung ; Koo, Hye Young ; Kang, Yun Chan</creator><contributor>Okbaz, Abdulkerim</contributor><creatorcontrib>Yang, Soo Young ; Park, Jin-Sung ; Koo, Hye Young ; Kang, Yun Chan ; Okbaz, Abdulkerim</creatorcontrib><description>Achieving excellent electrochemical performance at high charging rate has been a long-cherished dream in the field of lithium-ion batteries (LIBs). As a part of the efforts to meet the goal, an innovative strategy for the synthesis of 3D porous highly graphitic carbon microspheres, to which numerous hollow metal oxide nanospheres are anchored, for use as anode in LIBs is introduced. Hollow carbon nanosphere-aggregated microspheres prepared from the spray drying process are graphitized with the aid of metal catalysts, and subsequent oxidation selectively removed amorphous carbon, leading to the formation of highly conductive graphitic carbon matrix. Numerous hollow metal oxide nanospheres formed simultaneously during the oxidation process via nanoscale Kirkendall diffusion are anchored onto the carbonaceous matrix, effectively reinforcing the structural integrity by alleviating volume changes and reducing lithium-ion diffusion lengths. The synergistic effect of combining hollow metal oxide nanospheres with high theoretical capacity with conductive carbon matrix led to accelerated electrochemical kinetics, resulting in high capacity at high charging rate. In addition, trapping the hollow metal oxide nanospheres inside hollow carbon nanospheres could effectively alleviate the volume changes, which led to high structural stability. When applied as LIB anodes, the microspheres exhibit a capacity of 411 mA h g−1 after 2500 cycles at 10.0 A g−1, with ~80% capacity retention. The anode exhibits a high capacity of 274 mA h g−1 at an extremely high current density of 50.0 A g−1, thus demonstrating the structural merits of the microspheres.</description><identifier>ISSN: 0363-907X</identifier><identifier>EISSN: 1099-114X</identifier><identifier>DOI: 10.1155/2023/9881400</identifier><language>eng</language><publisher>Bognor Regis: Hindawi</publisher><subject>Anodes ; Aqueous solutions ; Batteries ; Carbon ; Catalysts ; Charging ; Current density ; Diffusion ; Electrochemical analysis ; Electrochemistry ; Electrodes ; Electrolytes ; Electrons ; Graphitization ; Heat ; Ion diffusion ; Ion storage ; Kinetics ; Lithium ; Lithium-ion batteries ; Metal oxides ; Metals ; Microscopy ; Microspheres ; Nanoparticles ; Nanospheres ; Nitrates ; Oxidation ; Oxidation process ; Radiation ; Rechargeable batteries ; Spectrum analysis ; Spray drying ; Structural integrity ; Structural stability ; Synergistic effect ; Temperature</subject><ispartof>International journal of energy research, 2023-12, Vol.2023, p.1-23</ispartof><rights>Copyright © 2023 Soo Young Yang et al.</rights><rights>Copyright © 2023 Soo Young Yang et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c294t-3649b6d36e03db5215c93d924c6656bc36960da9be1305455b2c28366a7c0fa23</cites><orcidid>0000-0001-5769-5761 ; 0000-0001-5337-3722 ; 0000-0001-6826-4633 ; 0009-0002-2114-3556</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2900109792/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2900109792?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,860,873,21367,27901,27902,33721,43781,74045</link.rule.ids></links><search><contributor>Okbaz, Abdulkerim</contributor><creatorcontrib>Yang, Soo Young</creatorcontrib><creatorcontrib>Park, Jin-Sung</creatorcontrib><creatorcontrib>Koo, Hye Young</creatorcontrib><creatorcontrib>Kang, Yun Chan</creatorcontrib><title>Integration of Highly Graphitic Three-Dimensionally Ordered Macroporous Carbon Microspheres with Hollow Metal Oxide Nanospheres for Ultrafast and Durable Lithium-Ion Storage</title><title>International journal of energy research</title><description>Achieving excellent electrochemical performance at high charging rate has been a long-cherished dream in the field of lithium-ion batteries (LIBs). As a part of the efforts to meet the goal, an innovative strategy for the synthesis of 3D porous highly graphitic carbon microspheres, to which numerous hollow metal oxide nanospheres are anchored, for use as anode in LIBs is introduced. Hollow carbon nanosphere-aggregated microspheres prepared from the spray drying process are graphitized with the aid of metal catalysts, and subsequent oxidation selectively removed amorphous carbon, leading to the formation of highly conductive graphitic carbon matrix. Numerous hollow metal oxide nanospheres formed simultaneously during the oxidation process via nanoscale Kirkendall diffusion are anchored onto the carbonaceous matrix, effectively reinforcing the structural integrity by alleviating volume changes and reducing lithium-ion diffusion lengths. The synergistic effect of combining hollow metal oxide nanospheres with high theoretical capacity with conductive carbon matrix led to accelerated electrochemical kinetics, resulting in high capacity at high charging rate. In addition, trapping the hollow metal oxide nanospheres inside hollow carbon nanospheres could effectively alleviate the volume changes, which led to high structural stability. When applied as LIB anodes, the microspheres exhibit a capacity of 411 mA h g−1 after 2500 cycles at 10.0 A g−1, with ~80% capacity retention. The anode exhibits a high capacity of 274 mA h g−1 at an extremely high current density of 50.0 A g−1, thus demonstrating the structural merits of the microspheres.</description><subject>Anodes</subject><subject>Aqueous solutions</subject><subject>Batteries</subject><subject>Carbon</subject><subject>Catalysts</subject><subject>Charging</subject><subject>Current density</subject><subject>Diffusion</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrodes</subject><subject>Electrolytes</subject><subject>Electrons</subject><subject>Graphitization</subject><subject>Heat</subject><subject>Ion diffusion</subject><subject>Ion storage</subject><subject>Kinetics</subject><subject>Lithium</subject><subject>Lithium-ion batteries</subject><subject>Metal oxides</subject><subject>Metals</subject><subject>Microscopy</subject><subject>Microspheres</subject><subject>Nanoparticles</subject><subject>Nanospheres</subject><subject>Nitrates</subject><subject>Oxidation</subject><subject>Oxidation process</subject><subject>Radiation</subject><subject>Rechargeable batteries</subject><subject>Spectrum analysis</subject><subject>Spray drying</subject><subject>Structural integrity</subject><subject>Structural stability</subject><subject>Synergistic effect</subject><subject>Temperature</subject><issn>0363-907X</issn><issn>1099-114X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RHX</sourceid><sourceid>BENPR</sourceid><recordid>eNp9kU9P4zAQxS3ESltYbvsBLHFcAv6TuPVxVVhaqd0eAIlbNImdxiiNw9hRlw_Fd8RVEcc9jTTvN0968wj5ydk150VxI5iQN3o24zljJ2TCmdYZ5_nzKZkwqWSm2fT5OzkL4YWxpPHphLwv-2i3CNH5nvqGLty27d7oPcLQuuhq-tiitdmt29k-JAa6pG7QWLSGrqFGP3j0Y6BzwCpZrF1ahaFNeqB7F1u68F3n93RtI3R0888ZS_9C_8U0HulTFxEaCJFCb-jtiFB1lq7StRt32TLZPkSPsLU_yLcGumAvPuc5efpz9zhfZKvN_XL-e5XVQucxkyrXlTJSWSZNVQhe1FoaLfJaqUJVtVRaMQO6slyyIi-KStRiJpWCac0aEPKcXB59B_Svow2xfPEjpvChFJqx9NipPlBXR-oQOaBtygHdDvCt5Kw8FFIeCik_C0n4ryPeut7A3v2f_gBAxo1Z</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Yang, Soo Young</creator><creator>Park, Jin-Sung</creator><creator>Koo, Hye Young</creator><creator>Kang, Yun Chan</creator><general>Hindawi</general><general>Hindawi Limited</general><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7ST</scope><scope>7TB</scope><scope>7TN</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0001-5769-5761</orcidid><orcidid>https://orcid.org/0000-0001-5337-3722</orcidid><orcidid>https://orcid.org/0000-0001-6826-4633</orcidid><orcidid>https://orcid.org/0009-0002-2114-3556</orcidid></search><sort><creationdate>20231201</creationdate><title>Integration of Highly Graphitic Three-Dimensionally Ordered Macroporous Carbon Microspheres with Hollow Metal Oxide Nanospheres for Ultrafast and Durable Lithium-Ion Storage</title><author>Yang, Soo Young ; Park, Jin-Sung ; Koo, Hye Young ; Kang, Yun Chan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-3649b6d36e03db5215c93d924c6656bc36960da9be1305455b2c28366a7c0fa23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Anodes</topic><topic>Aqueous solutions</topic><topic>Batteries</topic><topic>Carbon</topic><topic>Catalysts</topic><topic>Charging</topic><topic>Current density</topic><topic>Diffusion</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrodes</topic><topic>Electrolytes</topic><topic>Electrons</topic><topic>Graphitization</topic><topic>Heat</topic><topic>Ion diffusion</topic><topic>Ion storage</topic><topic>Kinetics</topic><topic>Lithium</topic><topic>Lithium-ion batteries</topic><topic>Metal oxides</topic><topic>Metals</topic><topic>Microscopy</topic><topic>Microspheres</topic><topic>Nanoparticles</topic><topic>Nanospheres</topic><topic>Nitrates</topic><topic>Oxidation</topic><topic>Oxidation process</topic><topic>Radiation</topic><topic>Rechargeable batteries</topic><topic>Spectrum analysis</topic><topic>Spray drying</topic><topic>Structural integrity</topic><topic>Structural stability</topic><topic>Synergistic effect</topic><topic>Temperature</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Soo Young</creatorcontrib><creatorcontrib>Park, Jin-Sung</creatorcontrib><creatorcontrib>Koo, Hye Young</creatorcontrib><creatorcontrib>Kang, Yun Chan</creatorcontrib><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Environment Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Oceanic Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Environment Abstracts</collection><jtitle>International journal of energy research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Soo Young</au><au>Park, Jin-Sung</au><au>Koo, Hye Young</au><au>Kang, Yun Chan</au><au>Okbaz, Abdulkerim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Integration of Highly Graphitic Three-Dimensionally Ordered Macroporous Carbon Microspheres with Hollow Metal Oxide Nanospheres for Ultrafast and Durable Lithium-Ion Storage</atitle><jtitle>International journal of energy research</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>2023</volume><spage>1</spage><epage>23</epage><pages>1-23</pages><issn>0363-907X</issn><eissn>1099-114X</eissn><abstract>Achieving excellent electrochemical performance at high charging rate has been a long-cherished dream in the field of lithium-ion batteries (LIBs). As a part of the efforts to meet the goal, an innovative strategy for the synthesis of 3D porous highly graphitic carbon microspheres, to which numerous hollow metal oxide nanospheres are anchored, for use as anode in LIBs is introduced. Hollow carbon nanosphere-aggregated microspheres prepared from the spray drying process are graphitized with the aid of metal catalysts, and subsequent oxidation selectively removed amorphous carbon, leading to the formation of highly conductive graphitic carbon matrix. Numerous hollow metal oxide nanospheres formed simultaneously during the oxidation process via nanoscale Kirkendall diffusion are anchored onto the carbonaceous matrix, effectively reinforcing the structural integrity by alleviating volume changes and reducing lithium-ion diffusion lengths. The synergistic effect of combining hollow metal oxide nanospheres with high theoretical capacity with conductive carbon matrix led to accelerated electrochemical kinetics, resulting in high capacity at high charging rate. In addition, trapping the hollow metal oxide nanospheres inside hollow carbon nanospheres could effectively alleviate the volume changes, which led to high structural stability. When applied as LIB anodes, the microspheres exhibit a capacity of 411 mA h g−1 after 2500 cycles at 10.0 A g−1, with ~80% capacity retention. The anode exhibits a high capacity of 274 mA h g−1 at an extremely high current density of 50.0 A g−1, thus demonstrating the structural merits of the microspheres.</abstract><cop>Bognor Regis</cop><pub>Hindawi</pub><doi>10.1155/2023/9881400</doi><tpages>23</tpages><orcidid>https://orcid.org/0000-0001-5769-5761</orcidid><orcidid>https://orcid.org/0000-0001-5337-3722</orcidid><orcidid>https://orcid.org/0000-0001-6826-4633</orcidid><orcidid>https://orcid.org/0009-0002-2114-3556</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-907X
ispartof International journal of energy research, 2023-12, Vol.2023, p.1-23
issn 0363-907X
1099-114X
language eng
recordid cdi_proquest_journals_2900109792
source Wiley Online Library Open Access; DOAJ Directory of Open Access Journals; Alma/SFX Local Collection; ProQuest Central
subjects Anodes
Aqueous solutions
Batteries
Carbon
Catalysts
Charging
Current density
Diffusion
Electrochemical analysis
Electrochemistry
Electrodes
Electrolytes
Electrons
Graphitization
Heat
Ion diffusion
Ion storage
Kinetics
Lithium
Lithium-ion batteries
Metal oxides
Metals
Microscopy
Microspheres
Nanoparticles
Nanospheres
Nitrates
Oxidation
Oxidation process
Radiation
Rechargeable batteries
Spectrum analysis
Spray drying
Structural integrity
Structural stability
Synergistic effect
Temperature
title Integration of Highly Graphitic Three-Dimensionally Ordered Macroporous Carbon Microspheres with Hollow Metal Oxide Nanospheres for Ultrafast and Durable Lithium-Ion Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T02%3A48%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Integration%20of%20Highly%20Graphitic%20Three-Dimensionally%20Ordered%20Macroporous%20Carbon%20Microspheres%20with%20Hollow%20Metal%20Oxide%20Nanospheres%20for%20Ultrafast%20and%20Durable%20Lithium-Ion%20Storage&rft.jtitle=International%20journal%20of%20energy%20research&rft.au=Yang,%20Soo%20Young&rft.date=2023-12-01&rft.volume=2023&rft.spage=1&rft.epage=23&rft.pages=1-23&rft.issn=0363-907X&rft.eissn=1099-114X&rft_id=info:doi/10.1155/2023/9881400&rft_dat=%3Cproquest_cross%3E2900109792%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2900109792&rft_id=info:pmid/&rfr_iscdi=true