Enhanced heat transportation for bioconvective motion of Maxwell nanofluids over a stretching sheet with Cattaneo–Christov flux

The main aim of this work is to study the thermal conductivity of base fluid with mild inclusion of nanoparticles. We perform numerical study for transportation of Maxwell nanofluids with activation energy and Cattaneo–Christov flux over an extending sheet along with mass transpiration. Further, bio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanics of time-dependent materials 2023-12, Vol.27 (4), p.1257-1272
Hauptverfasser: Abdal, Sohaib, Siddique, Imran, Ahmadian, Ali, Salahshour, Soheil, Salimi, Mehdi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1272
container_issue 4
container_start_page 1257
container_title Mechanics of time-dependent materials
container_volume 27
creator Abdal, Sohaib
Siddique, Imran
Ahmadian, Ali
Salahshour, Soheil
Salimi, Mehdi
description The main aim of this work is to study the thermal conductivity of base fluid with mild inclusion of nanoparticles. We perform numerical study for transportation of Maxwell nanofluids with activation energy and Cattaneo–Christov flux over an extending sheet along with mass transpiration. Further, bioconvection of microorganisms may support avoiding the possible settling of nanoentities. We formulate the theoretical study as a nonlinear coupled boundary value problem involving partial derivatives. Then ordinary differential equations are obtained from the leading partial differential equations with the help of appropriate similarity transformations. We obtain numerical results by using the Runge–Kutta fourth-order method with shooting technique. The effects of various physical parameters such as mixed convection, buoyancy ratio, Raleigh number, Lewis number, Prandtl number, magnetic parameter, mass transpiration on bulk flow, temperature, concentration, and distributions of microorganisms are presented in graphical form. Also, the skin friction coefficient, Nusselt number, Sherwood number, and motile density number are calculated and presented in the form of tables. The validation of numerical procedure is confirmed through its comparison with the existing results. The computation is carried out for suitable inputs of the controlling parameters.
doi_str_mv 10.1007/s11043-022-09551-2
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2899671452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899671452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-bab919dad4192ed8bb2f2a0987785e21134b192968e147903a3a0fe628fb8a313</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwA6wssQ74kYe9RFV5SEVsYG1NkkmTqrWL7T7YwTfwh3wJbovEjtVcae69ozlJcsnoNaO0vPGM0UyklPOUqjxnKT9KBiwvRcpLIY-jFjJPOaX0NDnzfhZFqagcJJ9j04GpsSEdQiDBgfFL6wKE3hrSWkeq3tbWrLEO_RrJwu4XtiVPsN3gfE4MGNvOV33jiV2jI0B8cBjqrjdT4jvEQDZ96MgIQgCD9vvja9S53ge7JjG3PU9OWph7vPidw-T1bvwyekgnz_ePo9tJWotChLSCSjHVQJMxxbGRVcVbDlTJspQ5csZEVsWNKiSyLP4mQABtseCyrSQIJobJ1aF36ezbCn3QM7tyJp7UXCpVlCzLeXTxg6t21nuHrV66fgHuXTOqd6j1AbWOqPUetd6FxCHko9lM0f1V_5P6AeG2hNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899671452</pqid></control><display><type>article</type><title>Enhanced heat transportation for bioconvective motion of Maxwell nanofluids over a stretching sheet with Cattaneo–Christov flux</title><source>SpringerLink Journals - AutoHoldings</source><creator>Abdal, Sohaib ; Siddique, Imran ; Ahmadian, Ali ; Salahshour, Soheil ; Salimi, Mehdi</creator><creatorcontrib>Abdal, Sohaib ; Siddique, Imran ; Ahmadian, Ali ; Salahshour, Soheil ; Salimi, Mehdi</creatorcontrib><description>The main aim of this work is to study the thermal conductivity of base fluid with mild inclusion of nanoparticles. We perform numerical study for transportation of Maxwell nanofluids with activation energy and Cattaneo–Christov flux over an extending sheet along with mass transpiration. Further, bioconvection of microorganisms may support avoiding the possible settling of nanoentities. We formulate the theoretical study as a nonlinear coupled boundary value problem involving partial derivatives. Then ordinary differential equations are obtained from the leading partial differential equations with the help of appropriate similarity transformations. We obtain numerical results by using the Runge–Kutta fourth-order method with shooting technique. The effects of various physical parameters such as mixed convection, buoyancy ratio, Raleigh number, Lewis number, Prandtl number, magnetic parameter, mass transpiration on bulk flow, temperature, concentration, and distributions of microorganisms are presented in graphical form. Also, the skin friction coefficient, Nusselt number, Sherwood number, and motile density number are calculated and presented in the form of tables. The validation of numerical procedure is confirmed through its comparison with the existing results. The computation is carried out for suitable inputs of the controlling parameters.</description><identifier>ISSN: 1385-2000</identifier><identifier>EISSN: 1573-2738</identifier><identifier>DOI: 10.1007/s11043-022-09551-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Boundary value problems ; Characterization and Evaluation of Materials ; Classical Mechanics ; Coefficient of friction ; Engineering ; Fluid flow ; Magnetic properties ; Microorganisms ; Nanofluids ; Ordinary differential equations ; Parameters ; Partial differential equations ; Physical properties ; Polymer Sciences ; Prandtl number ; Runge-Kutta method ; Skin friction ; Solid Mechanics ; Thermal conductivity ; Transpiration ; Transportation</subject><ispartof>Mechanics of time-dependent materials, 2023-12, Vol.27 (4), p.1257-1272</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-bab919dad4192ed8bb2f2a0987785e21134b192968e147903a3a0fe628fb8a313</citedby><cites>FETCH-LOGICAL-c363t-bab919dad4192ed8bb2f2a0987785e21134b192968e147903a3a0fe628fb8a313</cites><orcidid>0000-0002-6537-6346 ; 0000-0002-0106-7050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11043-022-09551-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11043-022-09551-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Abdal, Sohaib</creatorcontrib><creatorcontrib>Siddique, Imran</creatorcontrib><creatorcontrib>Ahmadian, Ali</creatorcontrib><creatorcontrib>Salahshour, Soheil</creatorcontrib><creatorcontrib>Salimi, Mehdi</creatorcontrib><title>Enhanced heat transportation for bioconvective motion of Maxwell nanofluids over a stretching sheet with Cattaneo–Christov flux</title><title>Mechanics of time-dependent materials</title><addtitle>Mech Time-Depend Mater</addtitle><description>The main aim of this work is to study the thermal conductivity of base fluid with mild inclusion of nanoparticles. We perform numerical study for transportation of Maxwell nanofluids with activation energy and Cattaneo–Christov flux over an extending sheet along with mass transpiration. Further, bioconvection of microorganisms may support avoiding the possible settling of nanoentities. We formulate the theoretical study as a nonlinear coupled boundary value problem involving partial derivatives. Then ordinary differential equations are obtained from the leading partial differential equations with the help of appropriate similarity transformations. We obtain numerical results by using the Runge–Kutta fourth-order method with shooting technique. The effects of various physical parameters such as mixed convection, buoyancy ratio, Raleigh number, Lewis number, Prandtl number, magnetic parameter, mass transpiration on bulk flow, temperature, concentration, and distributions of microorganisms are presented in graphical form. Also, the skin friction coefficient, Nusselt number, Sherwood number, and motile density number are calculated and presented in the form of tables. The validation of numerical procedure is confirmed through its comparison with the existing results. The computation is carried out for suitable inputs of the controlling parameters.</description><subject>Boundary value problems</subject><subject>Characterization and Evaluation of Materials</subject><subject>Classical Mechanics</subject><subject>Coefficient of friction</subject><subject>Engineering</subject><subject>Fluid flow</subject><subject>Magnetic properties</subject><subject>Microorganisms</subject><subject>Nanofluids</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Physical properties</subject><subject>Polymer Sciences</subject><subject>Prandtl number</subject><subject>Runge-Kutta method</subject><subject>Skin friction</subject><subject>Solid Mechanics</subject><subject>Thermal conductivity</subject><subject>Transpiration</subject><subject>Transportation</subject><issn>1385-2000</issn><issn>1573-2738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwA6wssQ74kYe9RFV5SEVsYG1NkkmTqrWL7T7YwTfwh3wJbovEjtVcae69ozlJcsnoNaO0vPGM0UyklPOUqjxnKT9KBiwvRcpLIY-jFjJPOaX0NDnzfhZFqagcJJ9j04GpsSEdQiDBgfFL6wKE3hrSWkeq3tbWrLEO_RrJwu4XtiVPsN3gfE4MGNvOV33jiV2jI0B8cBjqrjdT4jvEQDZ96MgIQgCD9vvja9S53ge7JjG3PU9OWph7vPidw-T1bvwyekgnz_ePo9tJWotChLSCSjHVQJMxxbGRVcVbDlTJspQ5csZEVsWNKiSyLP4mQABtseCyrSQIJobJ1aF36ezbCn3QM7tyJp7UXCpVlCzLeXTxg6t21nuHrV66fgHuXTOqd6j1AbWOqPUetd6FxCHko9lM0f1V_5P6AeG2hNk</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Abdal, Sohaib</creator><creator>Siddique, Imran</creator><creator>Ahmadian, Ali</creator><creator>Salahshour, Soheil</creator><creator>Salimi, Mehdi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6537-6346</orcidid><orcidid>https://orcid.org/0000-0002-0106-7050</orcidid></search><sort><creationdate>20231201</creationdate><title>Enhanced heat transportation for bioconvective motion of Maxwell nanofluids over a stretching sheet with Cattaneo–Christov flux</title><author>Abdal, Sohaib ; Siddique, Imran ; Ahmadian, Ali ; Salahshour, Soheil ; Salimi, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-bab919dad4192ed8bb2f2a0987785e21134b192968e147903a3a0fe628fb8a313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary value problems</topic><topic>Characterization and Evaluation of Materials</topic><topic>Classical Mechanics</topic><topic>Coefficient of friction</topic><topic>Engineering</topic><topic>Fluid flow</topic><topic>Magnetic properties</topic><topic>Microorganisms</topic><topic>Nanofluids</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Physical properties</topic><topic>Polymer Sciences</topic><topic>Prandtl number</topic><topic>Runge-Kutta method</topic><topic>Skin friction</topic><topic>Solid Mechanics</topic><topic>Thermal conductivity</topic><topic>Transpiration</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdal, Sohaib</creatorcontrib><creatorcontrib>Siddique, Imran</creatorcontrib><creatorcontrib>Ahmadian, Ali</creatorcontrib><creatorcontrib>Salahshour, Soheil</creatorcontrib><creatorcontrib>Salimi, Mehdi</creatorcontrib><collection>CrossRef</collection><jtitle>Mechanics of time-dependent materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdal, Sohaib</au><au>Siddique, Imran</au><au>Ahmadian, Ali</au><au>Salahshour, Soheil</au><au>Salimi, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced heat transportation for bioconvective motion of Maxwell nanofluids over a stretching sheet with Cattaneo–Christov flux</atitle><jtitle>Mechanics of time-dependent materials</jtitle><stitle>Mech Time-Depend Mater</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>27</volume><issue>4</issue><spage>1257</spage><epage>1272</epage><pages>1257-1272</pages><issn>1385-2000</issn><eissn>1573-2738</eissn><abstract>The main aim of this work is to study the thermal conductivity of base fluid with mild inclusion of nanoparticles. We perform numerical study for transportation of Maxwell nanofluids with activation energy and Cattaneo–Christov flux over an extending sheet along with mass transpiration. Further, bioconvection of microorganisms may support avoiding the possible settling of nanoentities. We formulate the theoretical study as a nonlinear coupled boundary value problem involving partial derivatives. Then ordinary differential equations are obtained from the leading partial differential equations with the help of appropriate similarity transformations. We obtain numerical results by using the Runge–Kutta fourth-order method with shooting technique. The effects of various physical parameters such as mixed convection, buoyancy ratio, Raleigh number, Lewis number, Prandtl number, magnetic parameter, mass transpiration on bulk flow, temperature, concentration, and distributions of microorganisms are presented in graphical form. Also, the skin friction coefficient, Nusselt number, Sherwood number, and motile density number are calculated and presented in the form of tables. The validation of numerical procedure is confirmed through its comparison with the existing results. The computation is carried out for suitable inputs of the controlling parameters.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11043-022-09551-2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6537-6346</orcidid><orcidid>https://orcid.org/0000-0002-0106-7050</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1385-2000
ispartof Mechanics of time-dependent materials, 2023-12, Vol.27 (4), p.1257-1272
issn 1385-2000
1573-2738
language eng
recordid cdi_proquest_journals_2899671452
source SpringerLink Journals - AutoHoldings
subjects Boundary value problems
Characterization and Evaluation of Materials
Classical Mechanics
Coefficient of friction
Engineering
Fluid flow
Magnetic properties
Microorganisms
Nanofluids
Ordinary differential equations
Parameters
Partial differential equations
Physical properties
Polymer Sciences
Prandtl number
Runge-Kutta method
Skin friction
Solid Mechanics
Thermal conductivity
Transpiration
Transportation
title Enhanced heat transportation for bioconvective motion of Maxwell nanofluids over a stretching sheet with Cattaneo–Christov flux
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A11%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20heat%20transportation%20for%20bioconvective%20motion%20of%20Maxwell%20nanofluids%20over%20a%20stretching%20sheet%20with%20Cattaneo%E2%80%93Christov%20flux&rft.jtitle=Mechanics%20of%20time-dependent%20materials&rft.au=Abdal,%20Sohaib&rft.date=2023-12-01&rft.volume=27&rft.issue=4&rft.spage=1257&rft.epage=1272&rft.pages=1257-1272&rft.issn=1385-2000&rft.eissn=1573-2738&rft_id=info:doi/10.1007/s11043-022-09551-2&rft_dat=%3Cproquest_cross%3E2899671452%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899671452&rft_id=info:pmid/&rfr_iscdi=true