Enhanced heat transportation for bioconvective motion of Maxwell nanofluids over a stretching sheet with Cattaneo–Christov flux
The main aim of this work is to study the thermal conductivity of base fluid with mild inclusion of nanoparticles. We perform numerical study for transportation of Maxwell nanofluids with activation energy and Cattaneo–Christov flux over an extending sheet along with mass transpiration. Further, bio...
Gespeichert in:
Veröffentlicht in: | Mechanics of time-dependent materials 2023-12, Vol.27 (4), p.1257-1272 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1272 |
---|---|
container_issue | 4 |
container_start_page | 1257 |
container_title | Mechanics of time-dependent materials |
container_volume | 27 |
creator | Abdal, Sohaib Siddique, Imran Ahmadian, Ali Salahshour, Soheil Salimi, Mehdi |
description | The main aim of this work is to study the thermal conductivity of base fluid with mild inclusion of nanoparticles. We perform numerical study for transportation of Maxwell nanofluids with activation energy and Cattaneo–Christov flux over an extending sheet along with mass transpiration. Further, bioconvection of microorganisms may support avoiding the possible settling of nanoentities. We formulate the theoretical study as a nonlinear coupled boundary value problem involving partial derivatives. Then ordinary differential equations are obtained from the leading partial differential equations with the help of appropriate similarity transformations. We obtain numerical results by using the Runge–Kutta fourth-order method with shooting technique. The effects of various physical parameters such as mixed convection, buoyancy ratio, Raleigh number, Lewis number, Prandtl number, magnetic parameter, mass transpiration on bulk flow, temperature, concentration, and distributions of microorganisms are presented in graphical form. Also, the skin friction coefficient, Nusselt number, Sherwood number, and motile density number are calculated and presented in the form of tables. The validation of numerical procedure is confirmed through its comparison with the existing results. The computation is carried out for suitable inputs of the controlling parameters. |
doi_str_mv | 10.1007/s11043-022-09551-2 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2899671452</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899671452</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-bab919dad4192ed8bb2f2a0987785e21134b192968e147903a3a0fe628fb8a313</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRSMEEqXwA6wssQ74kYe9RFV5SEVsYG1NkkmTqrWL7T7YwTfwh3wJbovEjtVcae69ozlJcsnoNaO0vPGM0UyklPOUqjxnKT9KBiwvRcpLIY-jFjJPOaX0NDnzfhZFqagcJJ9j04GpsSEdQiDBgfFL6wKE3hrSWkeq3tbWrLEO_RrJwu4XtiVPsN3gfE4MGNvOV33jiV2jI0B8cBjqrjdT4jvEQDZ96MgIQgCD9vvja9S53ge7JjG3PU9OWph7vPidw-T1bvwyekgnz_ePo9tJWotChLSCSjHVQJMxxbGRVcVbDlTJspQ5csZEVsWNKiSyLP4mQABtseCyrSQIJobJ1aF36ezbCn3QM7tyJp7UXCpVlCzLeXTxg6t21nuHrV66fgHuXTOqd6j1AbWOqPUetd6FxCHko9lM0f1V_5P6AeG2hNk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899671452</pqid></control><display><type>article</type><title>Enhanced heat transportation for bioconvective motion of Maxwell nanofluids over a stretching sheet with Cattaneo–Christov flux</title><source>SpringerLink Journals - AutoHoldings</source><creator>Abdal, Sohaib ; Siddique, Imran ; Ahmadian, Ali ; Salahshour, Soheil ; Salimi, Mehdi</creator><creatorcontrib>Abdal, Sohaib ; Siddique, Imran ; Ahmadian, Ali ; Salahshour, Soheil ; Salimi, Mehdi</creatorcontrib><description>The main aim of this work is to study the thermal conductivity of base fluid with mild inclusion of nanoparticles. We perform numerical study for transportation of Maxwell nanofluids with activation energy and Cattaneo–Christov flux over an extending sheet along with mass transpiration. Further, bioconvection of microorganisms may support avoiding the possible settling of nanoentities. We formulate the theoretical study as a nonlinear coupled boundary value problem involving partial derivatives. Then ordinary differential equations are obtained from the leading partial differential equations with the help of appropriate similarity transformations. We obtain numerical results by using the Runge–Kutta fourth-order method with shooting technique. The effects of various physical parameters such as mixed convection, buoyancy ratio, Raleigh number, Lewis number, Prandtl number, magnetic parameter, mass transpiration on bulk flow, temperature, concentration, and distributions of microorganisms are presented in graphical form. Also, the skin friction coefficient, Nusselt number, Sherwood number, and motile density number are calculated and presented in the form of tables. The validation of numerical procedure is confirmed through its comparison with the existing results. The computation is carried out for suitable inputs of the controlling parameters.</description><identifier>ISSN: 1385-2000</identifier><identifier>EISSN: 1573-2738</identifier><identifier>DOI: 10.1007/s11043-022-09551-2</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Boundary value problems ; Characterization and Evaluation of Materials ; Classical Mechanics ; Coefficient of friction ; Engineering ; Fluid flow ; Magnetic properties ; Microorganisms ; Nanofluids ; Ordinary differential equations ; Parameters ; Partial differential equations ; Physical properties ; Polymer Sciences ; Prandtl number ; Runge-Kutta method ; Skin friction ; Solid Mechanics ; Thermal conductivity ; Transpiration ; Transportation</subject><ispartof>Mechanics of time-dependent materials, 2023-12, Vol.27 (4), p.1257-1272</ispartof><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022</rights><rights>The Author(s), under exclusive licence to Springer Nature B.V. 2022.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-bab919dad4192ed8bb2f2a0987785e21134b192968e147903a3a0fe628fb8a313</citedby><cites>FETCH-LOGICAL-c363t-bab919dad4192ed8bb2f2a0987785e21134b192968e147903a3a0fe628fb8a313</cites><orcidid>0000-0002-6537-6346 ; 0000-0002-0106-7050</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11043-022-09551-2$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11043-022-09551-2$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Abdal, Sohaib</creatorcontrib><creatorcontrib>Siddique, Imran</creatorcontrib><creatorcontrib>Ahmadian, Ali</creatorcontrib><creatorcontrib>Salahshour, Soheil</creatorcontrib><creatorcontrib>Salimi, Mehdi</creatorcontrib><title>Enhanced heat transportation for bioconvective motion of Maxwell nanofluids over a stretching sheet with Cattaneo–Christov flux</title><title>Mechanics of time-dependent materials</title><addtitle>Mech Time-Depend Mater</addtitle><description>The main aim of this work is to study the thermal conductivity of base fluid with mild inclusion of nanoparticles. We perform numerical study for transportation of Maxwell nanofluids with activation energy and Cattaneo–Christov flux over an extending sheet along with mass transpiration. Further, bioconvection of microorganisms may support avoiding the possible settling of nanoentities. We formulate the theoretical study as a nonlinear coupled boundary value problem involving partial derivatives. Then ordinary differential equations are obtained from the leading partial differential equations with the help of appropriate similarity transformations. We obtain numerical results by using the Runge–Kutta fourth-order method with shooting technique. The effects of various physical parameters such as mixed convection, buoyancy ratio, Raleigh number, Lewis number, Prandtl number, magnetic parameter, mass transpiration on bulk flow, temperature, concentration, and distributions of microorganisms are presented in graphical form. Also, the skin friction coefficient, Nusselt number, Sherwood number, and motile density number are calculated and presented in the form of tables. The validation of numerical procedure is confirmed through its comparison with the existing results. The computation is carried out for suitable inputs of the controlling parameters.</description><subject>Boundary value problems</subject><subject>Characterization and Evaluation of Materials</subject><subject>Classical Mechanics</subject><subject>Coefficient of friction</subject><subject>Engineering</subject><subject>Fluid flow</subject><subject>Magnetic properties</subject><subject>Microorganisms</subject><subject>Nanofluids</subject><subject>Ordinary differential equations</subject><subject>Parameters</subject><subject>Partial differential equations</subject><subject>Physical properties</subject><subject>Polymer Sciences</subject><subject>Prandtl number</subject><subject>Runge-Kutta method</subject><subject>Skin friction</subject><subject>Solid Mechanics</subject><subject>Thermal conductivity</subject><subject>Transpiration</subject><subject>Transportation</subject><issn>1385-2000</issn><issn>1573-2738</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kMtOwzAQRSMEEqXwA6wssQ74kYe9RFV5SEVsYG1NkkmTqrWL7T7YwTfwh3wJbovEjtVcae69ozlJcsnoNaO0vPGM0UyklPOUqjxnKT9KBiwvRcpLIY-jFjJPOaX0NDnzfhZFqagcJJ9j04GpsSEdQiDBgfFL6wKE3hrSWkeq3tbWrLEO_RrJwu4XtiVPsN3gfE4MGNvOV33jiV2jI0B8cBjqrjdT4jvEQDZ96MgIQgCD9vvja9S53ge7JjG3PU9OWph7vPidw-T1bvwyekgnz_ePo9tJWotChLSCSjHVQJMxxbGRVcVbDlTJspQ5csZEVsWNKiSyLP4mQABtseCyrSQIJobJ1aF36ezbCn3QM7tyJp7UXCpVlCzLeXTxg6t21nuHrV66fgHuXTOqd6j1AbWOqPUetd6FxCHko9lM0f1V_5P6AeG2hNk</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Abdal, Sohaib</creator><creator>Siddique, Imran</creator><creator>Ahmadian, Ali</creator><creator>Salahshour, Soheil</creator><creator>Salimi, Mehdi</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0002-6537-6346</orcidid><orcidid>https://orcid.org/0000-0002-0106-7050</orcidid></search><sort><creationdate>20231201</creationdate><title>Enhanced heat transportation for bioconvective motion of Maxwell nanofluids over a stretching sheet with Cattaneo–Christov flux</title><author>Abdal, Sohaib ; Siddique, Imran ; Ahmadian, Ali ; Salahshour, Soheil ; Salimi, Mehdi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-bab919dad4192ed8bb2f2a0987785e21134b192968e147903a3a0fe628fb8a313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Boundary value problems</topic><topic>Characterization and Evaluation of Materials</topic><topic>Classical Mechanics</topic><topic>Coefficient of friction</topic><topic>Engineering</topic><topic>Fluid flow</topic><topic>Magnetic properties</topic><topic>Microorganisms</topic><topic>Nanofluids</topic><topic>Ordinary differential equations</topic><topic>Parameters</topic><topic>Partial differential equations</topic><topic>Physical properties</topic><topic>Polymer Sciences</topic><topic>Prandtl number</topic><topic>Runge-Kutta method</topic><topic>Skin friction</topic><topic>Solid Mechanics</topic><topic>Thermal conductivity</topic><topic>Transpiration</topic><topic>Transportation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abdal, Sohaib</creatorcontrib><creatorcontrib>Siddique, Imran</creatorcontrib><creatorcontrib>Ahmadian, Ali</creatorcontrib><creatorcontrib>Salahshour, Soheil</creatorcontrib><creatorcontrib>Salimi, Mehdi</creatorcontrib><collection>CrossRef</collection><jtitle>Mechanics of time-dependent materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abdal, Sohaib</au><au>Siddique, Imran</au><au>Ahmadian, Ali</au><au>Salahshour, Soheil</au><au>Salimi, Mehdi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced heat transportation for bioconvective motion of Maxwell nanofluids over a stretching sheet with Cattaneo–Christov flux</atitle><jtitle>Mechanics of time-dependent materials</jtitle><stitle>Mech Time-Depend Mater</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>27</volume><issue>4</issue><spage>1257</spage><epage>1272</epage><pages>1257-1272</pages><issn>1385-2000</issn><eissn>1573-2738</eissn><abstract>The main aim of this work is to study the thermal conductivity of base fluid with mild inclusion of nanoparticles. We perform numerical study for transportation of Maxwell nanofluids with activation energy and Cattaneo–Christov flux over an extending sheet along with mass transpiration. Further, bioconvection of microorganisms may support avoiding the possible settling of nanoentities. We formulate the theoretical study as a nonlinear coupled boundary value problem involving partial derivatives. Then ordinary differential equations are obtained from the leading partial differential equations with the help of appropriate similarity transformations. We obtain numerical results by using the Runge–Kutta fourth-order method with shooting technique. The effects of various physical parameters such as mixed convection, buoyancy ratio, Raleigh number, Lewis number, Prandtl number, magnetic parameter, mass transpiration on bulk flow, temperature, concentration, and distributions of microorganisms are presented in graphical form. Also, the skin friction coefficient, Nusselt number, Sherwood number, and motile density number are calculated and presented in the form of tables. The validation of numerical procedure is confirmed through its comparison with the existing results. The computation is carried out for suitable inputs of the controlling parameters.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><doi>10.1007/s11043-022-09551-2</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0002-6537-6346</orcidid><orcidid>https://orcid.org/0000-0002-0106-7050</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1385-2000 |
ispartof | Mechanics of time-dependent materials, 2023-12, Vol.27 (4), p.1257-1272 |
issn | 1385-2000 1573-2738 |
language | eng |
recordid | cdi_proquest_journals_2899671452 |
source | SpringerLink Journals - AutoHoldings |
subjects | Boundary value problems Characterization and Evaluation of Materials Classical Mechanics Coefficient of friction Engineering Fluid flow Magnetic properties Microorganisms Nanofluids Ordinary differential equations Parameters Partial differential equations Physical properties Polymer Sciences Prandtl number Runge-Kutta method Skin friction Solid Mechanics Thermal conductivity Transpiration Transportation |
title | Enhanced heat transportation for bioconvective motion of Maxwell nanofluids over a stretching sheet with Cattaneo–Christov flux |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T23%3A11%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20heat%20transportation%20for%20bioconvective%20motion%20of%20Maxwell%20nanofluids%20over%20a%20stretching%20sheet%20with%20Cattaneo%E2%80%93Christov%20flux&rft.jtitle=Mechanics%20of%20time-dependent%20materials&rft.au=Abdal,%20Sohaib&rft.date=2023-12-01&rft.volume=27&rft.issue=4&rft.spage=1257&rft.epage=1272&rft.pages=1257-1272&rft.issn=1385-2000&rft.eissn=1573-2738&rft_id=info:doi/10.1007/s11043-022-09551-2&rft_dat=%3Cproquest_cross%3E2899671452%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899671452&rft_id=info:pmid/&rfr_iscdi=true |