A size-dependent meshless model for free vibration analysis of 2D-functionally graded multiple nanobeam system
In this study, the free vibration of two-directional functionally graded (2D-FG) multiple nanobeam system (MNBS) are studied by considering Winkler elastic medium between each nanobeam. Effects of small scale are considered using the nonlocal elasticity theory. The material properties of the FG nano...
Gespeichert in:
Veröffentlicht in: | Journal of the Brazilian Society of Mechanical Sciences and Engineering 2024, Vol.46 (1), Article 11 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | Journal of the Brazilian Society of Mechanical Sciences and Engineering |
container_volume | 46 |
creator | Ahmadi, Isa Davarpanah, Mahdi Sladek, Jan Sladek, Vladimir Moradi, Mohammad Naeim |
description | In this study, the free vibration of two-directional functionally graded (2D-FG) multiple nanobeam system (MNBS) are studied by considering Winkler elastic medium between each nanobeam. Effects of small scale are considered using the nonlocal elasticity theory. The material properties of the FG nanobeams are considered to vary over the length and thickness of the nanobeams. The equations of motion are derived using Hamilton’s principle and the first-order shear deformation beam theory (FSDBT), and a meshless formulation is developed to discretize the governing equations. Numerical results are obtained for both cases of free-chain and clamped-chain multiple nanobeam system. In order to validate the accuracy of the meshless formulation, numerical results for free vibration of 1D-FG single nanobeam are compared with the available predictions of various beam theories and solution approaches. Also, free vibration of homogeneous double nanobeam system is analyzed and good agreement is observed while comparing these results with analytical solutions. In the numerical results, the effects of nonlocal parameter, slenderness ratio, FG power index, elastic medium stiffness, number of nanobeams, boundary conditions and concentrated mass on the free vibration of 1D- and 2D-FG single and multiple nanobeam system are investigated. |
doi_str_mv | 10.1007/s40430-023-04580-5 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2899671326</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899671326</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-420490bfcfbdc7c41ae0d628a47a94016709a0efd446ac6f9d36a300ffd0a4f33</originalsourceid><addsrcrecordid>eNp9kM1LxDAQxYsouH78A54CnqPTJk3b47J-woIXPYe0maxd2rRmWqH-9Xat4M3TDMN7j3m_KLqK4SYGyG5JghTAIREcZJoDT4-iVZyD4kIV8fG8qyznaZ7lp9EZ0R5AJKlKV5FfM6q_kFvs0Vv0A2uR3hskYm1nsWGuC8wFRPZZl8EMdeeZ8aaZqCbWOZbccTf66nA3TTOxXTAWLWvHZqj7Bpk3vivRtIwmGrC9iE6caQgvf-d59PZw_7p54tuXx-fNessrocTAZQKygNJVrrRVVsnYIFiV5EZmppAwl4HCADorpTKVcoUVyggA5ywY6YQ4j66X3D50HyPSoPfdGOYXSSd5UagsFomaVcmiqkJHFNDpPtStCZOOQR-46oWrnrnqH646nU1iMdEs9jsMf9H_uL4BP9l86g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899671326</pqid></control><display><type>article</type><title>A size-dependent meshless model for free vibration analysis of 2D-functionally graded multiple nanobeam system</title><source>SpringerLink Journals (MCLS)</source><creator>Ahmadi, Isa ; Davarpanah, Mahdi ; Sladek, Jan ; Sladek, Vladimir ; Moradi, Mohammad Naeim</creator><creatorcontrib>Ahmadi, Isa ; Davarpanah, Mahdi ; Sladek, Jan ; Sladek, Vladimir ; Moradi, Mohammad Naeim</creatorcontrib><description>In this study, the free vibration of two-directional functionally graded (2D-FG) multiple nanobeam system (MNBS) are studied by considering Winkler elastic medium between each nanobeam. Effects of small scale are considered using the nonlocal elasticity theory. The material properties of the FG nanobeams are considered to vary over the length and thickness of the nanobeams. The equations of motion are derived using Hamilton’s principle and the first-order shear deformation beam theory (FSDBT), and a meshless formulation is developed to discretize the governing equations. Numerical results are obtained for both cases of free-chain and clamped-chain multiple nanobeam system. In order to validate the accuracy of the meshless formulation, numerical results for free vibration of 1D-FG single nanobeam are compared with the available predictions of various beam theories and solution approaches. Also, free vibration of homogeneous double nanobeam system is analyzed and good agreement is observed while comparing these results with analytical solutions. In the numerical results, the effects of nonlocal parameter, slenderness ratio, FG power index, elastic medium stiffness, number of nanobeams, boundary conditions and concentrated mass on the free vibration of 1D- and 2D-FG single and multiple nanobeam system are investigated.</description><identifier>ISSN: 1678-5878</identifier><identifier>EISSN: 1806-3691</identifier><identifier>DOI: 10.1007/s40430-023-04580-5</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Boundary conditions ; Elastic media ; Engineering ; Equations of motion ; Exact solutions ; Free vibration ; Functionally gradient materials ; Hamilton's principle ; Material properties ; Mechanical Engineering ; Meshless methods ; Nonlocal elasticity ; Shear deformation ; Slenderness ratio ; Technical Paper ; Thickness ; Two dimensional analysis ; Vibration analysis</subject><ispartof>Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, Vol.46 (1), Article 11</ispartof><rights>The Author(s), under exclusive licence to The Brazilian Society of Mechanical Sciences and Engineering 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-420490bfcfbdc7c41ae0d628a47a94016709a0efd446ac6f9d36a300ffd0a4f33</citedby><cites>FETCH-LOGICAL-c363t-420490bfcfbdc7c41ae0d628a47a94016709a0efd446ac6f9d36a300ffd0a4f33</cites><orcidid>0000-0003-3327-1504</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s40430-023-04580-5$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s40430-023-04580-5$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Ahmadi, Isa</creatorcontrib><creatorcontrib>Davarpanah, Mahdi</creatorcontrib><creatorcontrib>Sladek, Jan</creatorcontrib><creatorcontrib>Sladek, Vladimir</creatorcontrib><creatorcontrib>Moradi, Mohammad Naeim</creatorcontrib><title>A size-dependent meshless model for free vibration analysis of 2D-functionally graded multiple nanobeam system</title><title>Journal of the Brazilian Society of Mechanical Sciences and Engineering</title><addtitle>J Braz. Soc. Mech. Sci. Eng</addtitle><description>In this study, the free vibration of two-directional functionally graded (2D-FG) multiple nanobeam system (MNBS) are studied by considering Winkler elastic medium between each nanobeam. Effects of small scale are considered using the nonlocal elasticity theory. The material properties of the FG nanobeams are considered to vary over the length and thickness of the nanobeams. The equations of motion are derived using Hamilton’s principle and the first-order shear deformation beam theory (FSDBT), and a meshless formulation is developed to discretize the governing equations. Numerical results are obtained for both cases of free-chain and clamped-chain multiple nanobeam system. In order to validate the accuracy of the meshless formulation, numerical results for free vibration of 1D-FG single nanobeam are compared with the available predictions of various beam theories and solution approaches. Also, free vibration of homogeneous double nanobeam system is analyzed and good agreement is observed while comparing these results with analytical solutions. In the numerical results, the effects of nonlocal parameter, slenderness ratio, FG power index, elastic medium stiffness, number of nanobeams, boundary conditions and concentrated mass on the free vibration of 1D- and 2D-FG single and multiple nanobeam system are investigated.</description><subject>Boundary conditions</subject><subject>Elastic media</subject><subject>Engineering</subject><subject>Equations of motion</subject><subject>Exact solutions</subject><subject>Free vibration</subject><subject>Functionally gradient materials</subject><subject>Hamilton's principle</subject><subject>Material properties</subject><subject>Mechanical Engineering</subject><subject>Meshless methods</subject><subject>Nonlocal elasticity</subject><subject>Shear deformation</subject><subject>Slenderness ratio</subject><subject>Technical Paper</subject><subject>Thickness</subject><subject>Two dimensional analysis</subject><subject>Vibration analysis</subject><issn>1678-5878</issn><issn>1806-3691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><recordid>eNp9kM1LxDAQxYsouH78A54CnqPTJk3b47J-woIXPYe0maxd2rRmWqH-9Xat4M3TDMN7j3m_KLqK4SYGyG5JghTAIREcZJoDT4-iVZyD4kIV8fG8qyznaZ7lp9EZ0R5AJKlKV5FfM6q_kFvs0Vv0A2uR3hskYm1nsWGuC8wFRPZZl8EMdeeZ8aaZqCbWOZbccTf66nA3TTOxXTAWLWvHZqj7Bpk3vivRtIwmGrC9iE6caQgvf-d59PZw_7p54tuXx-fNessrocTAZQKygNJVrrRVVsnYIFiV5EZmppAwl4HCADorpTKVcoUVyggA5ywY6YQ4j66X3D50HyPSoPfdGOYXSSd5UagsFomaVcmiqkJHFNDpPtStCZOOQR-46oWrnrnqH646nU1iMdEs9jsMf9H_uL4BP9l86g</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Ahmadi, Isa</creator><creator>Davarpanah, Mahdi</creator><creator>Sladek, Jan</creator><creator>Sladek, Vladimir</creator><creator>Moradi, Mohammad Naeim</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-3327-1504</orcidid></search><sort><creationdate>2024</creationdate><title>A size-dependent meshless model for free vibration analysis of 2D-functionally graded multiple nanobeam system</title><author>Ahmadi, Isa ; Davarpanah, Mahdi ; Sladek, Jan ; Sladek, Vladimir ; Moradi, Mohammad Naeim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-420490bfcfbdc7c41ae0d628a47a94016709a0efd446ac6f9d36a300ffd0a4f33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Boundary conditions</topic><topic>Elastic media</topic><topic>Engineering</topic><topic>Equations of motion</topic><topic>Exact solutions</topic><topic>Free vibration</topic><topic>Functionally gradient materials</topic><topic>Hamilton's principle</topic><topic>Material properties</topic><topic>Mechanical Engineering</topic><topic>Meshless methods</topic><topic>Nonlocal elasticity</topic><topic>Shear deformation</topic><topic>Slenderness ratio</topic><topic>Technical Paper</topic><topic>Thickness</topic><topic>Two dimensional analysis</topic><topic>Vibration analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Ahmadi, Isa</creatorcontrib><creatorcontrib>Davarpanah, Mahdi</creatorcontrib><creatorcontrib>Sladek, Jan</creatorcontrib><creatorcontrib>Sladek, Vladimir</creatorcontrib><creatorcontrib>Moradi, Mohammad Naeim</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ahmadi, Isa</au><au>Davarpanah, Mahdi</au><au>Sladek, Jan</au><au>Sladek, Vladimir</au><au>Moradi, Mohammad Naeim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A size-dependent meshless model for free vibration analysis of 2D-functionally graded multiple nanobeam system</atitle><jtitle>Journal of the Brazilian Society of Mechanical Sciences and Engineering</jtitle><stitle>J Braz. Soc. Mech. Sci. Eng</stitle><date>2024</date><risdate>2024</risdate><volume>46</volume><issue>1</issue><artnum>11</artnum><issn>1678-5878</issn><eissn>1806-3691</eissn><abstract>In this study, the free vibration of two-directional functionally graded (2D-FG) multiple nanobeam system (MNBS) are studied by considering Winkler elastic medium between each nanobeam. Effects of small scale are considered using the nonlocal elasticity theory. The material properties of the FG nanobeams are considered to vary over the length and thickness of the nanobeams. The equations of motion are derived using Hamilton’s principle and the first-order shear deformation beam theory (FSDBT), and a meshless formulation is developed to discretize the governing equations. Numerical results are obtained for both cases of free-chain and clamped-chain multiple nanobeam system. In order to validate the accuracy of the meshless formulation, numerical results for free vibration of 1D-FG single nanobeam are compared with the available predictions of various beam theories and solution approaches. Also, free vibration of homogeneous double nanobeam system is analyzed and good agreement is observed while comparing these results with analytical solutions. In the numerical results, the effects of nonlocal parameter, slenderness ratio, FG power index, elastic medium stiffness, number of nanobeams, boundary conditions and concentrated mass on the free vibration of 1D- and 2D-FG single and multiple nanobeam system are investigated.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s40430-023-04580-5</doi><orcidid>https://orcid.org/0000-0003-3327-1504</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1678-5878 |
ispartof | Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2024, Vol.46 (1), Article 11 |
issn | 1678-5878 1806-3691 |
language | eng |
recordid | cdi_proquest_journals_2899671326 |
source | SpringerLink Journals (MCLS) |
subjects | Boundary conditions Elastic media Engineering Equations of motion Exact solutions Free vibration Functionally gradient materials Hamilton's principle Material properties Mechanical Engineering Meshless methods Nonlocal elasticity Shear deformation Slenderness ratio Technical Paper Thickness Two dimensional analysis Vibration analysis |
title | A size-dependent meshless model for free vibration analysis of 2D-functionally graded multiple nanobeam system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T19%3A22%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20size-dependent%20meshless%20model%20for%20free%20vibration%20analysis%20of%202D-functionally%20graded%20multiple%20nanobeam%20system&rft.jtitle=Journal%20of%20the%20Brazilian%20Society%20of%20Mechanical%20Sciences%20and%20Engineering&rft.au=Ahmadi,%20Isa&rft.date=2024&rft.volume=46&rft.issue=1&rft.artnum=11&rft.issn=1678-5878&rft.eissn=1806-3691&rft_id=info:doi/10.1007/s40430-023-04580-5&rft_dat=%3Cproquest_cross%3E2899671326%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899671326&rft_id=info:pmid/&rfr_iscdi=true |