Memory-induced Magnus effect

Spinning objects moving through air or a liquid experience a lift force—a phenomenon known as the Magnus effect. This effect is commonly exploited in ball sports but also is of considerable importance for applications in the aviation industry. Whereas Magnus forces are strong for large objects, they...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature physics 2023-12, Vol.19 (12), p.1904-1909
Hauptverfasser: Cao, Xin, Das, Debankur, Windbacher, Niklas, Ginot, Félix, Krüger, Matthias, Bechinger, Clemens
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1909
container_issue 12
container_start_page 1904
container_title Nature physics
container_volume 19
creator Cao, Xin
Das, Debankur
Windbacher, Niklas
Ginot, Félix
Krüger, Matthias
Bechinger, Clemens
description Spinning objects moving through air or a liquid experience a lift force—a phenomenon known as the Magnus effect. This effect is commonly exploited in ball sports but also is of considerable importance for applications in the aviation industry. Whereas Magnus forces are strong for large objects, they are weak at small scales and eventually vanish for overdamped micrometre-sized particles in simple liquids. Here we demonstrate a roughly one-million-fold enhanced Magnus force of spinning colloids in viscoelastic fluids. Such fluids are characterized by a time-delayed response to external perturbations, which causes a deformation of the fluidic network around the moving particle. When the particle also spins, the deformation field becomes misaligned relative to the particle’s moving direction, leading to a force perpendicular to the direction of travel and the spinning axis. Our uncovering of strongly enhanced memory-induced Magnus forces at microscales opens up applications for particle sorting and steering, and the creation and visualization of anomalous flows. The Magnus effect refers to rotating objects developing a lift force when travelling through a fluid. It normally vanishes at microscopic length scales but now a very large Magnus effect is demonstrated for spinning colloids in viscoelastic fluids.
doi_str_mv 10.1038/s41567-023-02213-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2899560723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899560723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-dc4b980a5779b76ed8fea063b73874a5721a783999e26f424e587a080e44f7ed3</originalsourceid><addsrcrecordid>eNp9kE1LAzEQhoMoWKt_QDwUPEeTTDaTHKX4BS1e9BzS3Ulpsbs12T303xtd0ZuHYYbh_YCHsUspbqQAe5u1rAxyoaCMksDlEZtI1BVX2srj3xvhlJ3lvBVCKyNhwq6WtOvSgW_aZqipmS3Duh3yjGKkuj9nJzG8Z7r42VP29nD_On_ii5fH5_ndgtdgoOdNrVfOilAhuhUaamykIAysECzq8lYyoAXnHCkTtdJUWQzCCtI6IjUwZddj7j51HwPl3m-7IbWl0ivrXGUEKigqNarq1OWcKPp92uxCOngp_BcFP1LwhYL_puBlMcFoykXcrin9Rf_j-gQZblzq</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899560723</pqid></control><display><type>article</type><title>Memory-induced Magnus effect</title><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Cao, Xin ; Das, Debankur ; Windbacher, Niklas ; Ginot, Félix ; Krüger, Matthias ; Bechinger, Clemens</creator><creatorcontrib>Cao, Xin ; Das, Debankur ; Windbacher, Niklas ; Ginot, Félix ; Krüger, Matthias ; Bechinger, Clemens</creatorcontrib><description>Spinning objects moving through air or a liquid experience a lift force—a phenomenon known as the Magnus effect. This effect is commonly exploited in ball sports but also is of considerable importance for applications in the aviation industry. Whereas Magnus forces are strong for large objects, they are weak at small scales and eventually vanish for overdamped micrometre-sized particles in simple liquids. Here we demonstrate a roughly one-million-fold enhanced Magnus force of spinning colloids in viscoelastic fluids. Such fluids are characterized by a time-delayed response to external perturbations, which causes a deformation of the fluidic network around the moving particle. When the particle also spins, the deformation field becomes misaligned relative to the particle’s moving direction, leading to a force perpendicular to the direction of travel and the spinning axis. Our uncovering of strongly enhanced memory-induced Magnus forces at microscales opens up applications for particle sorting and steering, and the creation and visualization of anomalous flows. The Magnus effect refers to rotating objects developing a lift force when travelling through a fluid. It normally vanishes at microscopic length scales but now a very large Magnus effect is demonstrated for spinning colloids in viscoelastic fluids.</description><identifier>ISSN: 1745-2473</identifier><identifier>EISSN: 1745-2481</identifier><identifier>DOI: 10.1038/s41567-023-02213-1</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/301/923/916 ; 639/766/530/2803 ; Aerospace industry ; Atomic ; Classical and Continuum Physics ; Colloids ; Complex Systems ; Condensed Matter Physics ; Magnus effect ; Mathematical and Computational Physics ; Molecular ; Optical and Plasma Physics ; Particle sorting ; Particle spin ; Physics ; Physics and Astronomy ; Steering ; Theoretical ; Viscoelastic fluids ; Viscoelasticity</subject><ispartof>Nature physics, 2023-12, Vol.19 (12), p.1904-1909</ispartof><rights>The Author(s) 2023</rights><rights>The Author(s) 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-dc4b980a5779b76ed8fea063b73874a5721a783999e26f424e587a080e44f7ed3</citedby><cites>FETCH-LOGICAL-c363t-dc4b980a5779b76ed8fea063b73874a5721a783999e26f424e587a080e44f7ed3</cites><orcidid>0009-0000-0333-8291 ; 0000-0002-6382-423X ; 0000-0002-5496-5268 ; 0000-0001-9585-8613 ; 0000-0001-5015-935X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41567-023-02213-1$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41567-023-02213-1$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Cao, Xin</creatorcontrib><creatorcontrib>Das, Debankur</creatorcontrib><creatorcontrib>Windbacher, Niklas</creatorcontrib><creatorcontrib>Ginot, Félix</creatorcontrib><creatorcontrib>Krüger, Matthias</creatorcontrib><creatorcontrib>Bechinger, Clemens</creatorcontrib><title>Memory-induced Magnus effect</title><title>Nature physics</title><addtitle>Nat. Phys</addtitle><description>Spinning objects moving through air or a liquid experience a lift force—a phenomenon known as the Magnus effect. This effect is commonly exploited in ball sports but also is of considerable importance for applications in the aviation industry. Whereas Magnus forces are strong for large objects, they are weak at small scales and eventually vanish for overdamped micrometre-sized particles in simple liquids. Here we demonstrate a roughly one-million-fold enhanced Magnus force of spinning colloids in viscoelastic fluids. Such fluids are characterized by a time-delayed response to external perturbations, which causes a deformation of the fluidic network around the moving particle. When the particle also spins, the deformation field becomes misaligned relative to the particle’s moving direction, leading to a force perpendicular to the direction of travel and the spinning axis. Our uncovering of strongly enhanced memory-induced Magnus forces at microscales opens up applications for particle sorting and steering, and the creation and visualization of anomalous flows. The Magnus effect refers to rotating objects developing a lift force when travelling through a fluid. It normally vanishes at microscopic length scales but now a very large Magnus effect is demonstrated for spinning colloids in viscoelastic fluids.</description><subject>639/301/923/916</subject><subject>639/766/530/2803</subject><subject>Aerospace industry</subject><subject>Atomic</subject><subject>Classical and Continuum Physics</subject><subject>Colloids</subject><subject>Complex Systems</subject><subject>Condensed Matter Physics</subject><subject>Magnus effect</subject><subject>Mathematical and Computational Physics</subject><subject>Molecular</subject><subject>Optical and Plasma Physics</subject><subject>Particle sorting</subject><subject>Particle spin</subject><subject>Physics</subject><subject>Physics and Astronomy</subject><subject>Steering</subject><subject>Theoretical</subject><subject>Viscoelastic fluids</subject><subject>Viscoelasticity</subject><issn>1745-2473</issn><issn>1745-2481</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kE1LAzEQhoMoWKt_QDwUPEeTTDaTHKX4BS1e9BzS3Ulpsbs12T303xtd0ZuHYYbh_YCHsUspbqQAe5u1rAxyoaCMksDlEZtI1BVX2srj3xvhlJ3lvBVCKyNhwq6WtOvSgW_aZqipmS3Duh3yjGKkuj9nJzG8Z7r42VP29nD_On_ii5fH5_ndgtdgoOdNrVfOilAhuhUaamykIAysECzq8lYyoAXnHCkTtdJUWQzCCtI6IjUwZddj7j51HwPl3m-7IbWl0ivrXGUEKigqNarq1OWcKPp92uxCOngp_BcFP1LwhYL_puBlMcFoykXcrin9Rf_j-gQZblzq</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Cao, Xin</creator><creator>Das, Debankur</creator><creator>Windbacher, Niklas</creator><creator>Ginot, Félix</creator><creator>Krüger, Matthias</creator><creator>Bechinger, Clemens</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7U5</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0009-0000-0333-8291</orcidid><orcidid>https://orcid.org/0000-0002-6382-423X</orcidid><orcidid>https://orcid.org/0000-0002-5496-5268</orcidid><orcidid>https://orcid.org/0000-0001-9585-8613</orcidid><orcidid>https://orcid.org/0000-0001-5015-935X</orcidid></search><sort><creationdate>20231201</creationdate><title>Memory-induced Magnus effect</title><author>Cao, Xin ; Das, Debankur ; Windbacher, Niklas ; Ginot, Félix ; Krüger, Matthias ; Bechinger, Clemens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-dc4b980a5779b76ed8fea063b73874a5721a783999e26f424e587a080e44f7ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>639/301/923/916</topic><topic>639/766/530/2803</topic><topic>Aerospace industry</topic><topic>Atomic</topic><topic>Classical and Continuum Physics</topic><topic>Colloids</topic><topic>Complex Systems</topic><topic>Condensed Matter Physics</topic><topic>Magnus effect</topic><topic>Mathematical and Computational Physics</topic><topic>Molecular</topic><topic>Optical and Plasma Physics</topic><topic>Particle sorting</topic><topic>Particle spin</topic><topic>Physics</topic><topic>Physics and Astronomy</topic><topic>Steering</topic><topic>Theoretical</topic><topic>Viscoelastic fluids</topic><topic>Viscoelasticity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cao, Xin</creatorcontrib><creatorcontrib>Das, Debankur</creatorcontrib><creatorcontrib>Windbacher, Niklas</creatorcontrib><creatorcontrib>Ginot, Félix</creatorcontrib><creatorcontrib>Krüger, Matthias</creatorcontrib><creatorcontrib>Bechinger, Clemens</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Nature physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cao, Xin</au><au>Das, Debankur</au><au>Windbacher, Niklas</au><au>Ginot, Félix</au><au>Krüger, Matthias</au><au>Bechinger, Clemens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Memory-induced Magnus effect</atitle><jtitle>Nature physics</jtitle><stitle>Nat. Phys</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>19</volume><issue>12</issue><spage>1904</spage><epage>1909</epage><pages>1904-1909</pages><issn>1745-2473</issn><eissn>1745-2481</eissn><abstract>Spinning objects moving through air or a liquid experience a lift force—a phenomenon known as the Magnus effect. This effect is commonly exploited in ball sports but also is of considerable importance for applications in the aviation industry. Whereas Magnus forces are strong for large objects, they are weak at small scales and eventually vanish for overdamped micrometre-sized particles in simple liquids. Here we demonstrate a roughly one-million-fold enhanced Magnus force of spinning colloids in viscoelastic fluids. Such fluids are characterized by a time-delayed response to external perturbations, which causes a deformation of the fluidic network around the moving particle. When the particle also spins, the deformation field becomes misaligned relative to the particle’s moving direction, leading to a force perpendicular to the direction of travel and the spinning axis. Our uncovering of strongly enhanced memory-induced Magnus forces at microscales opens up applications for particle sorting and steering, and the creation and visualization of anomalous flows. The Magnus effect refers to rotating objects developing a lift force when travelling through a fluid. It normally vanishes at microscopic length scales but now a very large Magnus effect is demonstrated for spinning colloids in viscoelastic fluids.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><doi>10.1038/s41567-023-02213-1</doi><tpages>6</tpages><orcidid>https://orcid.org/0009-0000-0333-8291</orcidid><orcidid>https://orcid.org/0000-0002-6382-423X</orcidid><orcidid>https://orcid.org/0000-0002-5496-5268</orcidid><orcidid>https://orcid.org/0000-0001-9585-8613</orcidid><orcidid>https://orcid.org/0000-0001-5015-935X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1745-2473
ispartof Nature physics, 2023-12, Vol.19 (12), p.1904-1909
issn 1745-2473
1745-2481
language eng
recordid cdi_proquest_journals_2899560723
source Nature; SpringerLink Journals - AutoHoldings
subjects 639/301/923/916
639/766/530/2803
Aerospace industry
Atomic
Classical and Continuum Physics
Colloids
Complex Systems
Condensed Matter Physics
Magnus effect
Mathematical and Computational Physics
Molecular
Optical and Plasma Physics
Particle sorting
Particle spin
Physics
Physics and Astronomy
Steering
Theoretical
Viscoelastic fluids
Viscoelasticity
title Memory-induced Magnus effect
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T11%3A58%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Memory-induced%20Magnus%20effect&rft.jtitle=Nature%20physics&rft.au=Cao,%20Xin&rft.date=2023-12-01&rft.volume=19&rft.issue=12&rft.spage=1904&rft.epage=1909&rft.pages=1904-1909&rft.issn=1745-2473&rft.eissn=1745-2481&rft_id=info:doi/10.1038/s41567-023-02213-1&rft_dat=%3Cproquest_cross%3E2899560723%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899560723&rft_id=info:pmid/&rfr_iscdi=true