Cost‐Effective High Entropy Core–Shell Fiber for Stable Oxygen Evolution Reaction at 2 A cm−2

Exploring highly efficient oxygen evolution reaction (OER) electrocatalysts is important for industrial water electrolysis, especially under high current densities (>1 A cm−2). High‐entropy alloy (HEA) with high surface OER activity and excellent electrical conductivity of the core is an ideal ro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced functional materials 2023-12, Vol.33 (50), p.n/a
Hauptverfasser: Cui, Yi‐Fan, Jiang, Si‐Da, Fu, Qiang, Wang, Ran, Xu, Ping, Sui, Yu, Wang, Xian‐Jie, Ning, Zhi‐Liang, Sun, Jian‐Fei, Sun, Xun, Nikiforov, Alexander, Song, Bo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 50
container_start_page
container_title Advanced functional materials
container_volume 33
creator Cui, Yi‐Fan
Jiang, Si‐Da
Fu, Qiang
Wang, Ran
Xu, Ping
Sui, Yu
Wang, Xian‐Jie
Ning, Zhi‐Liang
Sun, Jian‐Fei
Sun, Xun
Nikiforov, Alexander
Song, Bo
description Exploring highly efficient oxygen evolution reaction (OER) electrocatalysts is important for industrial water electrolysis, especially under high current densities (>1 A cm−2). High‐entropy alloy (HEA) with high surface OER activity and excellent electrical conductivity of the core is an ideal route to improve the catalytic activity. Herein, a combined theoretical and experimental approach to establish core–shell FeCoNiMoAl‐based HEA as a promising OER electrocatalyst is presented. Theoretical calculations combined with structure analyses indicate crystalline–amorphous (c–a) heterostructure of shell reduces the electron transfer resistance and generates more active sites, furthermore the crystalline core improves the conductivity and self‐supporting ability. HEA electrodes demonstrate superior OER performance with an overpotential (η) of 470 mV at 2 A cm−2 and no apparent degradation even after 330 h of continuous testing, notably,  for overall water splitting the stability is more than 120 h at 2.06 V. The special core–shell structure achieves a win–win strategy for high OER activity and stability. These findings shed light on the structural design of HEA electrocatalysts and present a promising route to achieve highly efficient electrocatalysts for industrial water electrolysis and relevant energy conversion processes. Cost‐effective high entropy core–shell fiber prepared by melt‐extracted are constructed as a bifunctional electrocatalyst. The c–a heterostructure effectively enhances the oxygen evolution reaction activity by increasing the number of active sites and accelerating the electron transfer, demonstrating an overpotential of 470 mV in alkaline electrolyte with outstanding long‐term stability over 330 h at 2 A cm−2.
doi_str_mv 10.1002/adfm.202306889
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2899549270</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899549270</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2479-4141f0e8355e34c960f1d09b9afc7ce37717c5dfacdaa3efd205b22a402f6e233</originalsourceid><addsrcrecordid>eNqFkE1PwkAURSdGExHdup7EdXE-2k5nSSqICYZENHHXTKdvoKR0cFrQ7li6NPoP-SWCGFy6endxzn3JReiSkg4lhF2rzMw7jDBOwiiSR6hFQxp6nLDo-JDp8yk6q6oZIVQI7reQjm1Vb9YfPWNA1_kK8CCfTHGvrJ1dNDi2Djbrr_EUigL38xQcNtbhca3SAvDorZlAiXsrWyzr3Jb4AZT-CarGDHexnm_eP9k5OjGqqODi97bRU7_3GA-84ej2Lu4OPc18IT2f-tQQiHgQAPe1DImhGZGpVEYLDVwIKnSQGaUzpTiYjJEgZUz5hJkQGOdtdLXvXTj7soSqTmZ26crty4RFUga-ZIJsqc6e0s5WlQOTLFw-V65JKEl2Qya7IZPDkFtB7oXXvIDmHzrp3vTv_9xvmVR5lw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899549270</pqid></control><display><type>article</type><title>Cost‐Effective High Entropy Core–Shell Fiber for Stable Oxygen Evolution Reaction at 2 A cm−2</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Cui, Yi‐Fan ; Jiang, Si‐Da ; Fu, Qiang ; Wang, Ran ; Xu, Ping ; Sui, Yu ; Wang, Xian‐Jie ; Ning, Zhi‐Liang ; Sun, Jian‐Fei ; Sun, Xun ; Nikiforov, Alexander ; Song, Bo</creator><creatorcontrib>Cui, Yi‐Fan ; Jiang, Si‐Da ; Fu, Qiang ; Wang, Ran ; Xu, Ping ; Sui, Yu ; Wang, Xian‐Jie ; Ning, Zhi‐Liang ; Sun, Jian‐Fei ; Sun, Xun ; Nikiforov, Alexander ; Song, Bo</creatorcontrib><description>Exploring highly efficient oxygen evolution reaction (OER) electrocatalysts is important for industrial water electrolysis, especially under high current densities (&gt;1 A cm−2). High‐entropy alloy (HEA) with high surface OER activity and excellent electrical conductivity of the core is an ideal route to improve the catalytic activity. Herein, a combined theoretical and experimental approach to establish core–shell FeCoNiMoAl‐based HEA as a promising OER electrocatalyst is presented. Theoretical calculations combined with structure analyses indicate crystalline–amorphous (c–a) heterostructure of shell reduces the electron transfer resistance and generates more active sites, furthermore the crystalline core improves the conductivity and self‐supporting ability. HEA electrodes demonstrate superior OER performance with an overpotential (η) of 470 mV at 2 A cm−2 and no apparent degradation even after 330 h of continuous testing, notably,  for overall water splitting the stability is more than 120 h at 2.06 V. The special core–shell structure achieves a win–win strategy for high OER activity and stability. These findings shed light on the structural design of HEA electrocatalysts and present a promising route to achieve highly efficient electrocatalysts for industrial water electrolysis and relevant energy conversion processes. Cost‐effective high entropy core–shell fiber prepared by melt‐extracted are constructed as a bifunctional electrocatalyst. The c–a heterostructure effectively enhances the oxygen evolution reaction activity by increasing the number of active sites and accelerating the electron transfer, demonstrating an overpotential of 470 mV in alkaline electrolyte with outstanding long‐term stability over 330 h at 2 A cm−2.</description><identifier>ISSN: 1616-301X</identifier><identifier>EISSN: 1616-3028</identifier><identifier>DOI: 10.1002/adfm.202306889</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>alkaline water splitting ; Catalytic activity ; Core-shell structure ; Electrical resistivity ; electrocatalysis ; Electrocatalysts ; Electrolysis ; Electron transfer ; Energy conversion ; Heterostructures ; high current density ; High entropy alloys ; high‐entropy alloy fibers ; Industrial water ; Materials science ; oxygen evolution reaction ; Oxygen evolution reactions ; Structural design ; Water splitting</subject><ispartof>Advanced functional materials, 2023-12, Vol.33 (50), p.n/a</ispartof><rights>2023 Wiley‐VCH GmbH</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2479-4141f0e8355e34c960f1d09b9afc7ce37717c5dfacdaa3efd205b22a402f6e233</citedby><cites>FETCH-LOGICAL-c2479-4141f0e8355e34c960f1d09b9afc7ce37717c5dfacdaa3efd205b22a402f6e233</cites><orcidid>0000-0003-2000-5071</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadfm.202306889$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadfm.202306889$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids></links><search><creatorcontrib>Cui, Yi‐Fan</creatorcontrib><creatorcontrib>Jiang, Si‐Da</creatorcontrib><creatorcontrib>Fu, Qiang</creatorcontrib><creatorcontrib>Wang, Ran</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Sui, Yu</creatorcontrib><creatorcontrib>Wang, Xian‐Jie</creatorcontrib><creatorcontrib>Ning, Zhi‐Liang</creatorcontrib><creatorcontrib>Sun, Jian‐Fei</creatorcontrib><creatorcontrib>Sun, Xun</creatorcontrib><creatorcontrib>Nikiforov, Alexander</creatorcontrib><creatorcontrib>Song, Bo</creatorcontrib><title>Cost‐Effective High Entropy Core–Shell Fiber for Stable Oxygen Evolution Reaction at 2 A cm−2</title><title>Advanced functional materials</title><description>Exploring highly efficient oxygen evolution reaction (OER) electrocatalysts is important for industrial water electrolysis, especially under high current densities (&gt;1 A cm−2). High‐entropy alloy (HEA) with high surface OER activity and excellent electrical conductivity of the core is an ideal route to improve the catalytic activity. Herein, a combined theoretical and experimental approach to establish core–shell FeCoNiMoAl‐based HEA as a promising OER electrocatalyst is presented. Theoretical calculations combined with structure analyses indicate crystalline–amorphous (c–a) heterostructure of shell reduces the electron transfer resistance and generates more active sites, furthermore the crystalline core improves the conductivity and self‐supporting ability. HEA electrodes demonstrate superior OER performance with an overpotential (η) of 470 mV at 2 A cm−2 and no apparent degradation even after 330 h of continuous testing, notably,  for overall water splitting the stability is more than 120 h at 2.06 V. The special core–shell structure achieves a win–win strategy for high OER activity and stability. These findings shed light on the structural design of HEA electrocatalysts and present a promising route to achieve highly efficient electrocatalysts for industrial water electrolysis and relevant energy conversion processes. Cost‐effective high entropy core–shell fiber prepared by melt‐extracted are constructed as a bifunctional electrocatalyst. The c–a heterostructure effectively enhances the oxygen evolution reaction activity by increasing the number of active sites and accelerating the electron transfer, demonstrating an overpotential of 470 mV in alkaline electrolyte with outstanding long‐term stability over 330 h at 2 A cm−2.</description><subject>alkaline water splitting</subject><subject>Catalytic activity</subject><subject>Core-shell structure</subject><subject>Electrical resistivity</subject><subject>electrocatalysis</subject><subject>Electrocatalysts</subject><subject>Electrolysis</subject><subject>Electron transfer</subject><subject>Energy conversion</subject><subject>Heterostructures</subject><subject>high current density</subject><subject>High entropy alloys</subject><subject>high‐entropy alloy fibers</subject><subject>Industrial water</subject><subject>Materials science</subject><subject>oxygen evolution reaction</subject><subject>Oxygen evolution reactions</subject><subject>Structural design</subject><subject>Water splitting</subject><issn>1616-301X</issn><issn>1616-3028</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwkAURSdGExHdup7EdXE-2k5nSSqICYZENHHXTKdvoKR0cFrQ7li6NPoP-SWCGFy6endxzn3JReiSkg4lhF2rzMw7jDBOwiiSR6hFQxp6nLDo-JDp8yk6q6oZIVQI7reQjm1Vb9YfPWNA1_kK8CCfTHGvrJ1dNDi2Djbrr_EUigL38xQcNtbhca3SAvDorZlAiXsrWyzr3Jb4AZT-CarGDHexnm_eP9k5OjGqqODi97bRU7_3GA-84ej2Lu4OPc18IT2f-tQQiHgQAPe1DImhGZGpVEYLDVwIKnSQGaUzpTiYjJEgZUz5hJkQGOdtdLXvXTj7soSqTmZ26crty4RFUga-ZIJsqc6e0s5WlQOTLFw-V65JKEl2Qya7IZPDkFtB7oXXvIDmHzrp3vTv_9xvmVR5lw</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Cui, Yi‐Fan</creator><creator>Jiang, Si‐Da</creator><creator>Fu, Qiang</creator><creator>Wang, Ran</creator><creator>Xu, Ping</creator><creator>Sui, Yu</creator><creator>Wang, Xian‐Jie</creator><creator>Ning, Zhi‐Liang</creator><creator>Sun, Jian‐Fei</creator><creator>Sun, Xun</creator><creator>Nikiforov, Alexander</creator><creator>Song, Bo</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-2000-5071</orcidid></search><sort><creationdate>20231201</creationdate><title>Cost‐Effective High Entropy Core–Shell Fiber for Stable Oxygen Evolution Reaction at 2 A cm−2</title><author>Cui, Yi‐Fan ; Jiang, Si‐Da ; Fu, Qiang ; Wang, Ran ; Xu, Ping ; Sui, Yu ; Wang, Xian‐Jie ; Ning, Zhi‐Liang ; Sun, Jian‐Fei ; Sun, Xun ; Nikiforov, Alexander ; Song, Bo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2479-4141f0e8355e34c960f1d09b9afc7ce37717c5dfacdaa3efd205b22a402f6e233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>alkaline water splitting</topic><topic>Catalytic activity</topic><topic>Core-shell structure</topic><topic>Electrical resistivity</topic><topic>electrocatalysis</topic><topic>Electrocatalysts</topic><topic>Electrolysis</topic><topic>Electron transfer</topic><topic>Energy conversion</topic><topic>Heterostructures</topic><topic>high current density</topic><topic>High entropy alloys</topic><topic>high‐entropy alloy fibers</topic><topic>Industrial water</topic><topic>Materials science</topic><topic>oxygen evolution reaction</topic><topic>Oxygen evolution reactions</topic><topic>Structural design</topic><topic>Water splitting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cui, Yi‐Fan</creatorcontrib><creatorcontrib>Jiang, Si‐Da</creatorcontrib><creatorcontrib>Fu, Qiang</creatorcontrib><creatorcontrib>Wang, Ran</creatorcontrib><creatorcontrib>Xu, Ping</creatorcontrib><creatorcontrib>Sui, Yu</creatorcontrib><creatorcontrib>Wang, Xian‐Jie</creatorcontrib><creatorcontrib>Ning, Zhi‐Liang</creatorcontrib><creatorcontrib>Sun, Jian‐Fei</creatorcontrib><creatorcontrib>Sun, Xun</creatorcontrib><creatorcontrib>Nikiforov, Alexander</creatorcontrib><creatorcontrib>Song, Bo</creatorcontrib><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Advanced functional materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cui, Yi‐Fan</au><au>Jiang, Si‐Da</au><au>Fu, Qiang</au><au>Wang, Ran</au><au>Xu, Ping</au><au>Sui, Yu</au><au>Wang, Xian‐Jie</au><au>Ning, Zhi‐Liang</au><au>Sun, Jian‐Fei</au><au>Sun, Xun</au><au>Nikiforov, Alexander</au><au>Song, Bo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Cost‐Effective High Entropy Core–Shell Fiber for Stable Oxygen Evolution Reaction at 2 A cm−2</atitle><jtitle>Advanced functional materials</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>33</volume><issue>50</issue><epage>n/a</epage><issn>1616-301X</issn><eissn>1616-3028</eissn><abstract>Exploring highly efficient oxygen evolution reaction (OER) electrocatalysts is important for industrial water electrolysis, especially under high current densities (&gt;1 A cm−2). High‐entropy alloy (HEA) with high surface OER activity and excellent electrical conductivity of the core is an ideal route to improve the catalytic activity. Herein, a combined theoretical and experimental approach to establish core–shell FeCoNiMoAl‐based HEA as a promising OER electrocatalyst is presented. Theoretical calculations combined with structure analyses indicate crystalline–amorphous (c–a) heterostructure of shell reduces the electron transfer resistance and generates more active sites, furthermore the crystalline core improves the conductivity and self‐supporting ability. HEA electrodes demonstrate superior OER performance with an overpotential (η) of 470 mV at 2 A cm−2 and no apparent degradation even after 330 h of continuous testing, notably,  for overall water splitting the stability is more than 120 h at 2.06 V. The special core–shell structure achieves a win–win strategy for high OER activity and stability. These findings shed light on the structural design of HEA electrocatalysts and present a promising route to achieve highly efficient electrocatalysts for industrial water electrolysis and relevant energy conversion processes. Cost‐effective high entropy core–shell fiber prepared by melt‐extracted are constructed as a bifunctional electrocatalyst. The c–a heterostructure effectively enhances the oxygen evolution reaction activity by increasing the number of active sites and accelerating the electron transfer, demonstrating an overpotential of 470 mV in alkaline electrolyte with outstanding long‐term stability over 330 h at 2 A cm−2.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/adfm.202306889</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-2000-5071</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1616-301X
ispartof Advanced functional materials, 2023-12, Vol.33 (50), p.n/a
issn 1616-301X
1616-3028
language eng
recordid cdi_proquest_journals_2899549270
source Wiley Online Library Journals Frontfile Complete
subjects alkaline water splitting
Catalytic activity
Core-shell structure
Electrical resistivity
electrocatalysis
Electrocatalysts
Electrolysis
Electron transfer
Energy conversion
Heterostructures
high current density
High entropy alloys
high‐entropy alloy fibers
Industrial water
Materials science
oxygen evolution reaction
Oxygen evolution reactions
Structural design
Water splitting
title Cost‐Effective High Entropy Core–Shell Fiber for Stable Oxygen Evolution Reaction at 2 A cm−2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A52%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Cost%E2%80%90Effective%20High%20Entropy%20Core%E2%80%93Shell%20Fiber%20for%20Stable%20Oxygen%20Evolution%20Reaction%20at%202%20A%20cm%E2%88%922&rft.jtitle=Advanced%20functional%20materials&rft.au=Cui,%20Yi%E2%80%90Fan&rft.date=2023-12-01&rft.volume=33&rft.issue=50&rft.epage=n/a&rft.issn=1616-301X&rft.eissn=1616-3028&rft_id=info:doi/10.1002/adfm.202306889&rft_dat=%3Cproquest_cross%3E2899549270%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899549270&rft_id=info:pmid/&rfr_iscdi=true