MIRACLE: Inverse Reinforcement and Curriculum Learning Model for Human-inspired Mobile Robot Navigation
In emergency scenarios, mobile robots must navigate like humans, interpreting stimuli to locate potential victims rapidly without interfering with first responders. Existing socially-aware navigation algorithms face computational and adaptability challenges. To overcome these, we propose a solution,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Gunukula, Nihal Tiwari, Kshitij Bera, Aniket |
description | In emergency scenarios, mobile robots must navigate like humans, interpreting stimuli to locate potential victims rapidly without interfering with first responders. Existing socially-aware navigation algorithms face computational and adaptability challenges. To overcome these, we propose a solution, MIRACLE -- an inverse reinforcement and curriculum learning model, that employs gamified learning to gather stimuli-driven human navigational data. This data is then used to train a Deep Inverse Maximum Entropy Reinforcement Learning model, reducing reliance on demonstrator abilities. Testing reveals a low loss of 2.7717 within a 400-sized environment, signifying human-like response replication. Current databases lack comprehensive stimuli-driven data, necessitating our approach. By doing so, we enable robots to navigate emergency situations with human-like perception, enhancing their life-saving capabilities. |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2899513252</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899513252</sourcerecordid><originalsourceid>FETCH-proquest_journals_28995132523</originalsourceid><addsrcrecordid>eNqNjMEKgkAUAJcgSMp_eNBZ0N0s7RZSJFQH6S6rPmVF39au2_fnoQ_oNIcZZsE8LkQUJDvOV8y3tg_DkO8PPI6Fx7p7Xpyy2_kIOX3QWIQCFbXa1DgiTSCpgcwZo2o3uBFuKA0p6uCuGxxg7uDqRkmBIvtSBptZVGqYL7rSEzzkR3VyUpo2bNnKwaL_45ptL-dndg1eRr8d2qnstTM0q5InaRpHgsdc_Fd9AXTiRsQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899513252</pqid></control><display><type>article</type><title>MIRACLE: Inverse Reinforcement and Curriculum Learning Model for Human-inspired Mobile Robot Navigation</title><source>Free E- Journals</source><creator>Gunukula, Nihal ; Tiwari, Kshitij ; Bera, Aniket</creator><creatorcontrib>Gunukula, Nihal ; Tiwari, Kshitij ; Bera, Aniket</creatorcontrib><description>In emergency scenarios, mobile robots must navigate like humans, interpreting stimuli to locate potential victims rapidly without interfering with first responders. Existing socially-aware navigation algorithms face computational and adaptability challenges. To overcome these, we propose a solution, MIRACLE -- an inverse reinforcement and curriculum learning model, that employs gamified learning to gather stimuli-driven human navigational data. This data is then used to train a Deep Inverse Maximum Entropy Reinforcement Learning model, reducing reliance on demonstrator abilities. Testing reveals a low loss of 2.7717 within a 400-sized environment, signifying human-like response replication. Current databases lack comprehensive stimuli-driven data, necessitating our approach. By doing so, we enable robots to navigate emergency situations with human-like perception, enhancing their life-saving capabilities.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Curricula ; Emergency response ; Maximum entropy ; Navigation ; Robots ; Stimuli</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Gunukula, Nihal</creatorcontrib><creatorcontrib>Tiwari, Kshitij</creatorcontrib><creatorcontrib>Bera, Aniket</creatorcontrib><title>MIRACLE: Inverse Reinforcement and Curriculum Learning Model for Human-inspired Mobile Robot Navigation</title><title>arXiv.org</title><description>In emergency scenarios, mobile robots must navigate like humans, interpreting stimuli to locate potential victims rapidly without interfering with first responders. Existing socially-aware navigation algorithms face computational and adaptability challenges. To overcome these, we propose a solution, MIRACLE -- an inverse reinforcement and curriculum learning model, that employs gamified learning to gather stimuli-driven human navigational data. This data is then used to train a Deep Inverse Maximum Entropy Reinforcement Learning model, reducing reliance on demonstrator abilities. Testing reveals a low loss of 2.7717 within a 400-sized environment, signifying human-like response replication. Current databases lack comprehensive stimuli-driven data, necessitating our approach. By doing so, we enable robots to navigate emergency situations with human-like perception, enhancing their life-saving capabilities.</description><subject>Algorithms</subject><subject>Curricula</subject><subject>Emergency response</subject><subject>Maximum entropy</subject><subject>Navigation</subject><subject>Robots</subject><subject>Stimuli</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNqNjMEKgkAUAJcgSMp_eNBZ0N0s7RZSJFQH6S6rPmVF39au2_fnoQ_oNIcZZsE8LkQUJDvOV8y3tg_DkO8PPI6Fx7p7Xpyy2_kIOX3QWIQCFbXa1DgiTSCpgcwZo2o3uBFuKA0p6uCuGxxg7uDqRkmBIvtSBptZVGqYL7rSEzzkR3VyUpo2bNnKwaL_45ptL-dndg1eRr8d2qnstTM0q5InaRpHgsdc_Fd9AXTiRsQ</recordid><startdate>20231207</startdate><enddate>20231207</enddate><creator>Gunukula, Nihal</creator><creator>Tiwari, Kshitij</creator><creator>Bera, Aniket</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231207</creationdate><title>MIRACLE: Inverse Reinforcement and Curriculum Learning Model for Human-inspired Mobile Robot Navigation</title><author>Gunukula, Nihal ; Tiwari, Kshitij ; Bera, Aniket</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28995132523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Curricula</topic><topic>Emergency response</topic><topic>Maximum entropy</topic><topic>Navigation</topic><topic>Robots</topic><topic>Stimuli</topic><toplevel>online_resources</toplevel><creatorcontrib>Gunukula, Nihal</creatorcontrib><creatorcontrib>Tiwari, Kshitij</creatorcontrib><creatorcontrib>Bera, Aniket</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gunukula, Nihal</au><au>Tiwari, Kshitij</au><au>Bera, Aniket</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>MIRACLE: Inverse Reinforcement and Curriculum Learning Model for Human-inspired Mobile Robot Navigation</atitle><jtitle>arXiv.org</jtitle><date>2023-12-07</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>In emergency scenarios, mobile robots must navigate like humans, interpreting stimuli to locate potential victims rapidly without interfering with first responders. Existing socially-aware navigation algorithms face computational and adaptability challenges. To overcome these, we propose a solution, MIRACLE -- an inverse reinforcement and curriculum learning model, that employs gamified learning to gather stimuli-driven human navigational data. This data is then used to train a Deep Inverse Maximum Entropy Reinforcement Learning model, reducing reliance on demonstrator abilities. Testing reveals a low loss of 2.7717 within a 400-sized environment, signifying human-like response replication. Current databases lack comprehensive stimuli-driven data, necessitating our approach. By doing so, we enable robots to navigate emergency situations with human-like perception, enhancing their life-saving capabilities.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2899513252 |
source | Free E- Journals |
subjects | Algorithms Curricula Emergency response Maximum entropy Navigation Robots Stimuli |
title | MIRACLE: Inverse Reinforcement and Curriculum Learning Model for Human-inspired Mobile Robot Navigation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T01%3A14%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=MIRACLE:%20Inverse%20Reinforcement%20and%20Curriculum%20Learning%20Model%20for%20Human-inspired%20Mobile%20Robot%20Navigation&rft.jtitle=arXiv.org&rft.au=Gunukula,%20Nihal&rft.date=2023-12-07&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2899513252%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899513252&rft_id=info:pmid/&rfr_iscdi=true |