Distributed Differential Dynamic Programming Architectures for Large-Scale Multiagent Control

This article proposes two decentralized multiagent optimal control methods that combine the computational efficiency and scalability of differential dynamic programming (DDP) and the distributed nature of the alternating direction method of multipliers (ADMM). The first one, nested distributed DDP,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2023-12, Vol.39 (6), p.4387-4407
Hauptverfasser: Saravanos, Augustinos D., Aoyama, Yuichiro, Zhu, Hongchang, Theodorou, Evangelos A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4407
container_issue 6
container_start_page 4387
container_title IEEE transactions on robotics
container_volume 39
creator Saravanos, Augustinos D.
Aoyama, Yuichiro
Zhu, Hongchang
Theodorou, Evangelos A.
description This article proposes two decentralized multiagent optimal control methods that combine the computational efficiency and scalability of differential dynamic programming (DDP) and the distributed nature of the alternating direction method of multipliers (ADMM). The first one, nested distributed DDP, is a three-level architecture, which employs ADMM for consensus, an augmented Lagrangian layer for local constraints and DDP as the local optimizer. The second one, merged distributed DDP, is a two-level architecture that addresses both consensus and local constraints with ADMM, further reducing computational complexity. Both frameworks are fully decentralized since all computations are parallelizable among the agents and only local communication is necessary. Simulation results that scale up to thousands of cars and hundreds of drones demonstrate the effectiveness of the algorithms. Superior scalability to large-scale systems against other DDP and sequential quadratic programming methods is also illustrated. Finally, hardware experiments on a multirobot platform verify the applicability of the methods. A video with all results is provided in the supplementary material.
doi_str_mv 10.1109/TRO.2023.3319894
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2899471282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10288223</ieee_id><sourcerecordid>2899471282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-97284802d3b0639c975195aa5673f9e5beced73c2c95d8f2053e97dfa0095c123</originalsourceid><addsrcrecordid>eNpNkDtPwzAQgC0EEqWwMzBYYk7xI27ssWp5SUVFUEZkuc45uMqj2M7Qf0-qdmC6G77vTvoQuqVkQilRD-uP1YQRxiecUyVVfoZGVOU0I_lUng-7ECzjRMlLdBXjlhCWK8JH6HvhYwp-0yco8cI7BwHa5E2NF_vWNN7i99BVwTSNbys8C_bHJ7CpDxCx6wJemlBB9mlNDfitrwezGnw879oUuvoaXThTR7g5zTH6enpcz1-y5er5dT5bZpblImWqYDKXhJV8Q6ZcWVUIqoQxYlpwp0BswEJZcMusEqV0jAgOqiidIUQJSxkfo_vj3V3ofnuISW-7PrTDS82kUnlBmTxQ5EjZ0MUYwOld8I0Je02JPkTUQ0R9iKhPEQfl7qh4APiHMykZ4_wPm5huGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899471282</pqid></control><display><type>article</type><title>Distributed Differential Dynamic Programming Architectures for Large-Scale Multiagent Control</title><source>IEEE Electronic Library (IEL)</source><creator>Saravanos, Augustinos D. ; Aoyama, Yuichiro ; Zhu, Hongchang ; Theodorou, Evangelos A.</creator><creatorcontrib>Saravanos, Augustinos D. ; Aoyama, Yuichiro ; Zhu, Hongchang ; Theodorou, Evangelos A.</creatorcontrib><description>This article proposes two decentralized multiagent optimal control methods that combine the computational efficiency and scalability of differential dynamic programming (DDP) and the distributed nature of the alternating direction method of multipliers (ADMM). The first one, nested distributed DDP, is a three-level architecture, which employs ADMM for consensus, an augmented Lagrangian layer for local constraints and DDP as the local optimizer. The second one, merged distributed DDP, is a two-level architecture that addresses both consensus and local constraints with ADMM, further reducing computational complexity. Both frameworks are fully decentralized since all computations are parallelizable among the agents and only local communication is necessary. Simulation results that scale up to thousands of cars and hundreds of drones demonstrate the effectiveness of the algorithms. Superior scalability to large-scale systems against other DDP and sequential quadratic programming methods is also illustrated. Finally, hardware experiments on a multirobot platform verify the applicability of the methods. A video with all results is provided in the supplementary material.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2023.3319894</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computer architecture ; Control methods ; Convex functions ; Distributed robot systems ; Dynamic programming ; Heuristic algorithms ; Multi-robot systems ; Multiagent systems ; Multiple robots ; multirobot systems ; Optimal control ; optimization and optimal control ; Parallel processing ; Quadratic programming ; Scalability ; swarms ; System effectiveness</subject><ispartof>IEEE transactions on robotics, 2023-12, Vol.39 (6), p.4387-4407</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-97284802d3b0639c975195aa5673f9e5beced73c2c95d8f2053e97dfa0095c123</cites><orcidid>0000-0001-5676-3769 ; 0000-0001-9540-8137 ; 0000-0002-4063-9963 ; 0000-0002-0834-5738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10288223$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10288223$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saravanos, Augustinos D.</creatorcontrib><creatorcontrib>Aoyama, Yuichiro</creatorcontrib><creatorcontrib>Zhu, Hongchang</creatorcontrib><creatorcontrib>Theodorou, Evangelos A.</creatorcontrib><title>Distributed Differential Dynamic Programming Architectures for Large-Scale Multiagent Control</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>This article proposes two decentralized multiagent optimal control methods that combine the computational efficiency and scalability of differential dynamic programming (DDP) and the distributed nature of the alternating direction method of multipliers (ADMM). The first one, nested distributed DDP, is a three-level architecture, which employs ADMM for consensus, an augmented Lagrangian layer for local constraints and DDP as the local optimizer. The second one, merged distributed DDP, is a two-level architecture that addresses both consensus and local constraints with ADMM, further reducing computational complexity. Both frameworks are fully decentralized since all computations are parallelizable among the agents and only local communication is necessary. Simulation results that scale up to thousands of cars and hundreds of drones demonstrate the effectiveness of the algorithms. Superior scalability to large-scale systems against other DDP and sequential quadratic programming methods is also illustrated. Finally, hardware experiments on a multirobot platform verify the applicability of the methods. A video with all results is provided in the supplementary material.</description><subject>Algorithms</subject><subject>Computer architecture</subject><subject>Control methods</subject><subject>Convex functions</subject><subject>Distributed robot systems</subject><subject>Dynamic programming</subject><subject>Heuristic algorithms</subject><subject>Multi-robot systems</subject><subject>Multiagent systems</subject><subject>Multiple robots</subject><subject>multirobot systems</subject><subject>Optimal control</subject><subject>optimization and optimal control</subject><subject>Parallel processing</subject><subject>Quadratic programming</subject><subject>Scalability</subject><subject>swarms</subject><subject>System effectiveness</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAQgC0EEqWwMzBYYk7xI27ssWp5SUVFUEZkuc45uMqj2M7Qf0-qdmC6G77vTvoQuqVkQilRD-uP1YQRxiecUyVVfoZGVOU0I_lUng-7ECzjRMlLdBXjlhCWK8JH6HvhYwp-0yco8cI7BwHa5E2NF_vWNN7i99BVwTSNbys8C_bHJ7CpDxCx6wJemlBB9mlNDfitrwezGnw879oUuvoaXThTR7g5zTH6enpcz1-y5er5dT5bZpblImWqYDKXhJV8Q6ZcWVUIqoQxYlpwp0BswEJZcMusEqV0jAgOqiidIUQJSxkfo_vj3V3ofnuISW-7PrTDS82kUnlBmTxQ5EjZ0MUYwOld8I0Je02JPkTUQ0R9iKhPEQfl7qh4APiHMykZ4_wPm5huGw</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Saravanos, Augustinos D.</creator><creator>Aoyama, Yuichiro</creator><creator>Zhu, Hongchang</creator><creator>Theodorou, Evangelos A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5676-3769</orcidid><orcidid>https://orcid.org/0000-0001-9540-8137</orcidid><orcidid>https://orcid.org/0000-0002-4063-9963</orcidid><orcidid>https://orcid.org/0000-0002-0834-5738</orcidid></search><sort><creationdate>202312</creationdate><title>Distributed Differential Dynamic Programming Architectures for Large-Scale Multiagent Control</title><author>Saravanos, Augustinos D. ; Aoyama, Yuichiro ; Zhu, Hongchang ; Theodorou, Evangelos A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-97284802d3b0639c975195aa5673f9e5beced73c2c95d8f2053e97dfa0095c123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Computer architecture</topic><topic>Control methods</topic><topic>Convex functions</topic><topic>Distributed robot systems</topic><topic>Dynamic programming</topic><topic>Heuristic algorithms</topic><topic>Multi-robot systems</topic><topic>Multiagent systems</topic><topic>Multiple robots</topic><topic>multirobot systems</topic><topic>Optimal control</topic><topic>optimization and optimal control</topic><topic>Parallel processing</topic><topic>Quadratic programming</topic><topic>Scalability</topic><topic>swarms</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saravanos, Augustinos D.</creatorcontrib><creatorcontrib>Aoyama, Yuichiro</creatorcontrib><creatorcontrib>Zhu, Hongchang</creatorcontrib><creatorcontrib>Theodorou, Evangelos A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saravanos, Augustinos D.</au><au>Aoyama, Yuichiro</au><au>Zhu, Hongchang</au><au>Theodorou, Evangelos A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Differential Dynamic Programming Architectures for Large-Scale Multiagent Control</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2023-12</date><risdate>2023</risdate><volume>39</volume><issue>6</issue><spage>4387</spage><epage>4407</epage><pages>4387-4407</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>This article proposes two decentralized multiagent optimal control methods that combine the computational efficiency and scalability of differential dynamic programming (DDP) and the distributed nature of the alternating direction method of multipliers (ADMM). The first one, nested distributed DDP, is a three-level architecture, which employs ADMM for consensus, an augmented Lagrangian layer for local constraints and DDP as the local optimizer. The second one, merged distributed DDP, is a two-level architecture that addresses both consensus and local constraints with ADMM, further reducing computational complexity. Both frameworks are fully decentralized since all computations are parallelizable among the agents and only local communication is necessary. Simulation results that scale up to thousands of cars and hundreds of drones demonstrate the effectiveness of the algorithms. Superior scalability to large-scale systems against other DDP and sequential quadratic programming methods is also illustrated. Finally, hardware experiments on a multirobot platform verify the applicability of the methods. A video with all results is provided in the supplementary material.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2023.3319894</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-5676-3769</orcidid><orcidid>https://orcid.org/0000-0001-9540-8137</orcidid><orcidid>https://orcid.org/0000-0002-4063-9963</orcidid><orcidid>https://orcid.org/0000-0002-0834-5738</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2023-12, Vol.39 (6), p.4387-4407
issn 1552-3098
1941-0468
language eng
recordid cdi_proquest_journals_2899471282
source IEEE Electronic Library (IEL)
subjects Algorithms
Computer architecture
Control methods
Convex functions
Distributed robot systems
Dynamic programming
Heuristic algorithms
Multi-robot systems
Multiagent systems
Multiple robots
multirobot systems
Optimal control
optimization and optimal control
Parallel processing
Quadratic programming
Scalability
swarms
System effectiveness
title Distributed Differential Dynamic Programming Architectures for Large-Scale Multiagent Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Differential%20Dynamic%20Programming%20Architectures%20for%20Large-Scale%20Multiagent%20Control&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Saravanos,%20Augustinos%20D.&rft.date=2023-12&rft.volume=39&rft.issue=6&rft.spage=4387&rft.epage=4407&rft.pages=4387-4407&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2023.3319894&rft_dat=%3Cproquest_RIE%3E2899471282%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899471282&rft_id=info:pmid/&rft_ieee_id=10288223&rfr_iscdi=true