Distributed Differential Dynamic Programming Architectures for Large-Scale Multiagent Control
This article proposes two decentralized multiagent optimal control methods that combine the computational efficiency and scalability of differential dynamic programming (DDP) and the distributed nature of the alternating direction method of multipliers (ADMM). The first one, nested distributed DDP,...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2023-12, Vol.39 (6), p.4387-4407 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4407 |
---|---|
container_issue | 6 |
container_start_page | 4387 |
container_title | IEEE transactions on robotics |
container_volume | 39 |
creator | Saravanos, Augustinos D. Aoyama, Yuichiro Zhu, Hongchang Theodorou, Evangelos A. |
description | This article proposes two decentralized multiagent optimal control methods that combine the computational efficiency and scalability of differential dynamic programming (DDP) and the distributed nature of the alternating direction method of multipliers (ADMM). The first one, nested distributed DDP, is a three-level architecture, which employs ADMM for consensus, an augmented Lagrangian layer for local constraints and DDP as the local optimizer. The second one, merged distributed DDP, is a two-level architecture that addresses both consensus and local constraints with ADMM, further reducing computational complexity. Both frameworks are fully decentralized since all computations are parallelizable among the agents and only local communication is necessary. Simulation results that scale up to thousands of cars and hundreds of drones demonstrate the effectiveness of the algorithms. Superior scalability to large-scale systems against other DDP and sequential quadratic programming methods is also illustrated. Finally, hardware experiments on a multirobot platform verify the applicability of the methods. A video with all results is provided in the supplementary material. |
doi_str_mv | 10.1109/TRO.2023.3319894 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2899471282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10288223</ieee_id><sourcerecordid>2899471282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c245t-97284802d3b0639c975195aa5673f9e5beced73c2c95d8f2053e97dfa0095c123</originalsourceid><addsrcrecordid>eNpNkDtPwzAQgC0EEqWwMzBYYk7xI27ssWp5SUVFUEZkuc45uMqj2M7Qf0-qdmC6G77vTvoQuqVkQilRD-uP1YQRxiecUyVVfoZGVOU0I_lUng-7ECzjRMlLdBXjlhCWK8JH6HvhYwp-0yco8cI7BwHa5E2NF_vWNN7i99BVwTSNbys8C_bHJ7CpDxCx6wJemlBB9mlNDfitrwezGnw879oUuvoaXThTR7g5zTH6enpcz1-y5er5dT5bZpblImWqYDKXhJV8Q6ZcWVUIqoQxYlpwp0BswEJZcMusEqV0jAgOqiidIUQJSxkfo_vj3V3ofnuISW-7PrTDS82kUnlBmTxQ5EjZ0MUYwOld8I0Je02JPkTUQ0R9iKhPEQfl7qh4APiHMykZ4_wPm5huGw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899471282</pqid></control><display><type>article</type><title>Distributed Differential Dynamic Programming Architectures for Large-Scale Multiagent Control</title><source>IEEE Electronic Library (IEL)</source><creator>Saravanos, Augustinos D. ; Aoyama, Yuichiro ; Zhu, Hongchang ; Theodorou, Evangelos A.</creator><creatorcontrib>Saravanos, Augustinos D. ; Aoyama, Yuichiro ; Zhu, Hongchang ; Theodorou, Evangelos A.</creatorcontrib><description>This article proposes two decentralized multiagent optimal control methods that combine the computational efficiency and scalability of differential dynamic programming (DDP) and the distributed nature of the alternating direction method of multipliers (ADMM). The first one, nested distributed DDP, is a three-level architecture, which employs ADMM for consensus, an augmented Lagrangian layer for local constraints and DDP as the local optimizer. The second one, merged distributed DDP, is a two-level architecture that addresses both consensus and local constraints with ADMM, further reducing computational complexity. Both frameworks are fully decentralized since all computations are parallelizable among the agents and only local communication is necessary. Simulation results that scale up to thousands of cars and hundreds of drones demonstrate the effectiveness of the algorithms. Superior scalability to large-scale systems against other DDP and sequential quadratic programming methods is also illustrated. Finally, hardware experiments on a multirobot platform verify the applicability of the methods. A video with all results is provided in the supplementary material.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2023.3319894</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Computer architecture ; Control methods ; Convex functions ; Distributed robot systems ; Dynamic programming ; Heuristic algorithms ; Multi-robot systems ; Multiagent systems ; Multiple robots ; multirobot systems ; Optimal control ; optimization and optimal control ; Parallel processing ; Quadratic programming ; Scalability ; swarms ; System effectiveness</subject><ispartof>IEEE transactions on robotics, 2023-12, Vol.39 (6), p.4387-4407</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c245t-97284802d3b0639c975195aa5673f9e5beced73c2c95d8f2053e97dfa0095c123</cites><orcidid>0000-0001-5676-3769 ; 0000-0001-9540-8137 ; 0000-0002-4063-9963 ; 0000-0002-0834-5738</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10288223$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27924,27925,54758</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10288223$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Saravanos, Augustinos D.</creatorcontrib><creatorcontrib>Aoyama, Yuichiro</creatorcontrib><creatorcontrib>Zhu, Hongchang</creatorcontrib><creatorcontrib>Theodorou, Evangelos A.</creatorcontrib><title>Distributed Differential Dynamic Programming Architectures for Large-Scale Multiagent Control</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>This article proposes two decentralized multiagent optimal control methods that combine the computational efficiency and scalability of differential dynamic programming (DDP) and the distributed nature of the alternating direction method of multipliers (ADMM). The first one, nested distributed DDP, is a three-level architecture, which employs ADMM for consensus, an augmented Lagrangian layer for local constraints and DDP as the local optimizer. The second one, merged distributed DDP, is a two-level architecture that addresses both consensus and local constraints with ADMM, further reducing computational complexity. Both frameworks are fully decentralized since all computations are parallelizable among the agents and only local communication is necessary. Simulation results that scale up to thousands of cars and hundreds of drones demonstrate the effectiveness of the algorithms. Superior scalability to large-scale systems against other DDP and sequential quadratic programming methods is also illustrated. Finally, hardware experiments on a multirobot platform verify the applicability of the methods. A video with all results is provided in the supplementary material.</description><subject>Algorithms</subject><subject>Computer architecture</subject><subject>Control methods</subject><subject>Convex functions</subject><subject>Distributed robot systems</subject><subject>Dynamic programming</subject><subject>Heuristic algorithms</subject><subject>Multi-robot systems</subject><subject>Multiagent systems</subject><subject>Multiple robots</subject><subject>multirobot systems</subject><subject>Optimal control</subject><subject>optimization and optimal control</subject><subject>Parallel processing</subject><subject>Quadratic programming</subject><subject>Scalability</subject><subject>swarms</subject><subject>System effectiveness</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkDtPwzAQgC0EEqWwMzBYYk7xI27ssWp5SUVFUEZkuc45uMqj2M7Qf0-qdmC6G77vTvoQuqVkQilRD-uP1YQRxiecUyVVfoZGVOU0I_lUng-7ECzjRMlLdBXjlhCWK8JH6HvhYwp-0yco8cI7BwHa5E2NF_vWNN7i99BVwTSNbys8C_bHJ7CpDxCx6wJemlBB9mlNDfitrwezGnw879oUuvoaXThTR7g5zTH6enpcz1-y5er5dT5bZpblImWqYDKXhJV8Q6ZcWVUIqoQxYlpwp0BswEJZcMusEqV0jAgOqiidIUQJSxkfo_vj3V3ofnuISW-7PrTDS82kUnlBmTxQ5EjZ0MUYwOld8I0Je02JPkTUQ0R9iKhPEQfl7qh4APiHMykZ4_wPm5huGw</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Saravanos, Augustinos D.</creator><creator>Aoyama, Yuichiro</creator><creator>Zhu, Hongchang</creator><creator>Theodorou, Evangelos A.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-5676-3769</orcidid><orcidid>https://orcid.org/0000-0001-9540-8137</orcidid><orcidid>https://orcid.org/0000-0002-4063-9963</orcidid><orcidid>https://orcid.org/0000-0002-0834-5738</orcidid></search><sort><creationdate>202312</creationdate><title>Distributed Differential Dynamic Programming Architectures for Large-Scale Multiagent Control</title><author>Saravanos, Augustinos D. ; Aoyama, Yuichiro ; Zhu, Hongchang ; Theodorou, Evangelos A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c245t-97284802d3b0639c975195aa5673f9e5beced73c2c95d8f2053e97dfa0095c123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Computer architecture</topic><topic>Control methods</topic><topic>Convex functions</topic><topic>Distributed robot systems</topic><topic>Dynamic programming</topic><topic>Heuristic algorithms</topic><topic>Multi-robot systems</topic><topic>Multiagent systems</topic><topic>Multiple robots</topic><topic>multirobot systems</topic><topic>Optimal control</topic><topic>optimization and optimal control</topic><topic>Parallel processing</topic><topic>Quadratic programming</topic><topic>Scalability</topic><topic>swarms</topic><topic>System effectiveness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saravanos, Augustinos D.</creatorcontrib><creatorcontrib>Aoyama, Yuichiro</creatorcontrib><creatorcontrib>Zhu, Hongchang</creatorcontrib><creatorcontrib>Theodorou, Evangelos A.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Saravanos, Augustinos D.</au><au>Aoyama, Yuichiro</au><au>Zhu, Hongchang</au><au>Theodorou, Evangelos A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed Differential Dynamic Programming Architectures for Large-Scale Multiagent Control</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2023-12</date><risdate>2023</risdate><volume>39</volume><issue>6</issue><spage>4387</spage><epage>4407</epage><pages>4387-4407</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>This article proposes two decentralized multiagent optimal control methods that combine the computational efficiency and scalability of differential dynamic programming (DDP) and the distributed nature of the alternating direction method of multipliers (ADMM). The first one, nested distributed DDP, is a three-level architecture, which employs ADMM for consensus, an augmented Lagrangian layer for local constraints and DDP as the local optimizer. The second one, merged distributed DDP, is a two-level architecture that addresses both consensus and local constraints with ADMM, further reducing computational complexity. Both frameworks are fully decentralized since all computations are parallelizable among the agents and only local communication is necessary. Simulation results that scale up to thousands of cars and hundreds of drones demonstrate the effectiveness of the algorithms. Superior scalability to large-scale systems against other DDP and sequential quadratic programming methods is also illustrated. Finally, hardware experiments on a multirobot platform verify the applicability of the methods. A video with all results is provided in the supplementary material.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TRO.2023.3319894</doi><tpages>21</tpages><orcidid>https://orcid.org/0000-0001-5676-3769</orcidid><orcidid>https://orcid.org/0000-0001-9540-8137</orcidid><orcidid>https://orcid.org/0000-0002-4063-9963</orcidid><orcidid>https://orcid.org/0000-0002-0834-5738</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2023-12, Vol.39 (6), p.4387-4407 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_proquest_journals_2899471282 |
source | IEEE Electronic Library (IEL) |
subjects | Algorithms Computer architecture Control methods Convex functions Distributed robot systems Dynamic programming Heuristic algorithms Multi-robot systems Multiagent systems Multiple robots multirobot systems Optimal control optimization and optimal control Parallel processing Quadratic programming Scalability swarms System effectiveness |
title | Distributed Differential Dynamic Programming Architectures for Large-Scale Multiagent Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T02%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20Differential%20Dynamic%20Programming%20Architectures%20for%20Large-Scale%20Multiagent%20Control&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Saravanos,%20Augustinos%20D.&rft.date=2023-12&rft.volume=39&rft.issue=6&rft.spage=4387&rft.epage=4407&rft.pages=4387-4407&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2023.3319894&rft_dat=%3Cproquest_RIE%3E2899471282%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899471282&rft_id=info:pmid/&rft_ieee_id=10288223&rfr_iscdi=true |