Remanufacturability Evaluation Method for Used Vehicles Based on Stacking Ensemble Learning Framework

This paper proposes a novel method for evaluating the remanufacturability of used vehicles based on Stacking-Based Ensemble Learning Algorithm (SBELA). A method that combines a supply chain evolutionary game model is proposed to construct a Hybrid Dataset (HD), which aims to deal with Remanufacturin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE access 2023, Vol.11, p.135922-135933
Hauptverfasser: Wang, Qiucheng, Sun, Weice, Liu, Zhengqing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 135933
container_issue
container_start_page 135922
container_title IEEE access
container_volume 11
creator Wang, Qiucheng
Sun, Weice
Liu, Zhengqing
description This paper proposes a novel method for evaluating the remanufacturability of used vehicles based on Stacking-Based Ensemble Learning Algorithm (SBELA). A method that combines a supply chain evolutionary game model is proposed to construct a Hybrid Dataset (HD), which aims to deal with Remanufacturing Data Gap (RDG). A modified SBELA is used for evaluating the remanufacturability of used vehicles. The results of this investigation show that HD can be used to evaluate remanufacturability in the initial stage of remanufacturing. The modified SBELA significantly improves the evaluation of remanufacturability performance, compared to the Ridge Regression, Lasso Regression, Linear Regression, Stochastic Gradient Descent (SGD), Kneighbors, AdaBoost, and Gradient Boosting Regression (GBR), the Mean Square Error (MSE) has decreased by 51.88%, 53.75%, 52.05%, 58.15%, 8.33%, 57.92%, and 22.22%, respectively. The investigation results demonstrate HD's effectiveness in evaluating remanufacturability during the initial remanufacturing stage. This can provide a reference for newly established remanufacturing enterprises in the RDG dilemma.
doi_str_mv 10.1109/ACCESS.2023.3334168
format Article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_proquest_journals_2899467214</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10320324</ieee_id><doaj_id>oai_doaj_org_article_fff0ab67a7074913a1ae3f709c7018dd</doaj_id><sourcerecordid>2899467214</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-3d9ea46334cff32c853722aad2e131a47ecd7a876fd951b9d6fc272e9d2ef86b3</originalsourceid><addsrcrecordid>eNpNUdFq3DAQNKWBhiRf0D4Y-nxXSWtL1mN6XNrAhUKu6atYS6vEF5-VSnZK_r5yHUoWwa6GmZGWKYqPnK05Z_rL5Waz3e_XgglYA0DFZfOuOBVc6hXUIN-_mT8UFykdWK4mQ7U6LeiWjjhMHu04RWy7vhtfyu0z9hOOXRjKGxofgit9iOVdIlf-oofO9pTKrzhfM2M_on3shvtyOyQ6tj2VO8I4zMhVxCP9CfHxvDjx2Ce6eO1nxd3V9ufm-2r349v15nK3slDrcQVOE1Yy72C9B2GbGpQQiE4QB46VIusUNkp6p2veaie9FUqQzgTfyBbOiuvF1wU8mKfYHTG-mICd-QeEeG8wjvMCxnvPsJUKFVOV5oAcCbxi2irGG-ey1-fF6ymG3xOl0RzCFIf8fSMarSupBK8yCxaWjSGlSP7_q5yZOR6zxGPmeMxrPFn1aVF1RPRGASKfCv4C822Mvw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899467214</pqid></control><display><type>article</type><title>Remanufacturability Evaluation Method for Used Vehicles Based on Stacking Ensemble Learning Framework</title><source>IEEE Open Access Journals</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Wang, Qiucheng ; Sun, Weice ; Liu, Zhengqing</creator><creatorcontrib>Wang, Qiucheng ; Sun, Weice ; Liu, Zhengqing</creatorcontrib><description>This paper proposes a novel method for evaluating the remanufacturability of used vehicles based on Stacking-Based Ensemble Learning Algorithm (SBELA). A method that combines a supply chain evolutionary game model is proposed to construct a Hybrid Dataset (HD), which aims to deal with Remanufacturing Data Gap (RDG). A modified SBELA is used for evaluating the remanufacturability of used vehicles. The results of this investigation show that HD can be used to evaluate remanufacturability in the initial stage of remanufacturing. The modified SBELA significantly improves the evaluation of remanufacturability performance, compared to the Ridge Regression, Lasso Regression, Linear Regression, Stochastic Gradient Descent (SGD), Kneighbors, AdaBoost, and Gradient Boosting Regression (GBR), the Mean Square Error (MSE) has decreased by 51.88%, 53.75%, 52.05%, 58.15%, 8.33%, 57.92%, and 22.22%, respectively. The investigation results demonstrate HD's effectiveness in evaluating remanufacturability during the initial remanufacturing stage. This can provide a reference for newly established remanufacturing enterprises in the RDG dilemma.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2023.3334168</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; Costs ; Data models ; Ensemble learning ; evaluation of remanufacturability ; Games ; hybrid dataset ; Machine learning ; Manufacturing processes ; Performance evaluation ; Predictive models ; Production management ; Regression ; Remanufacturing ; remanufacturing data gap ; Solid modeling ; Stacking ; Stacking ensemble learning ; Supply chains ; Used automobiles ; Vehicles</subject><ispartof>IEEE access, 2023, Vol.11, p.135922-135933</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-3d9ea46334cff32c853722aad2e131a47ecd7a876fd951b9d6fc272e9d2ef86b3</cites><orcidid>0009-0006-9165-2355 ; 0000-0002-9553-1554 ; 0000-0002-3264-4893</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10320324$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2100,4022,27632,27922,27923,27924,54932</link.rule.ids></links><search><creatorcontrib>Wang, Qiucheng</creatorcontrib><creatorcontrib>Sun, Weice</creatorcontrib><creatorcontrib>Liu, Zhengqing</creatorcontrib><title>Remanufacturability Evaluation Method for Used Vehicles Based on Stacking Ensemble Learning Framework</title><title>IEEE access</title><addtitle>Access</addtitle><description>This paper proposes a novel method for evaluating the remanufacturability of used vehicles based on Stacking-Based Ensemble Learning Algorithm (SBELA). A method that combines a supply chain evolutionary game model is proposed to construct a Hybrid Dataset (HD), which aims to deal with Remanufacturing Data Gap (RDG). A modified SBELA is used for evaluating the remanufacturability of used vehicles. The results of this investigation show that HD can be used to evaluate remanufacturability in the initial stage of remanufacturing. The modified SBELA significantly improves the evaluation of remanufacturability performance, compared to the Ridge Regression, Lasso Regression, Linear Regression, Stochastic Gradient Descent (SGD), Kneighbors, AdaBoost, and Gradient Boosting Regression (GBR), the Mean Square Error (MSE) has decreased by 51.88%, 53.75%, 52.05%, 58.15%, 8.33%, 57.92%, and 22.22%, respectively. The investigation results demonstrate HD's effectiveness in evaluating remanufacturability during the initial remanufacturing stage. This can provide a reference for newly established remanufacturing enterprises in the RDG dilemma.</description><subject>Algorithms</subject><subject>Costs</subject><subject>Data models</subject><subject>Ensemble learning</subject><subject>evaluation of remanufacturability</subject><subject>Games</subject><subject>hybrid dataset</subject><subject>Machine learning</subject><subject>Manufacturing processes</subject><subject>Performance evaluation</subject><subject>Predictive models</subject><subject>Production management</subject><subject>Regression</subject><subject>Remanufacturing</subject><subject>remanufacturing data gap</subject><subject>Solid modeling</subject><subject>Stacking</subject><subject>Stacking ensemble learning</subject><subject>Supply chains</subject><subject>Used automobiles</subject><subject>Vehicles</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUdFq3DAQNKWBhiRf0D4Y-nxXSWtL1mN6XNrAhUKu6atYS6vEF5-VSnZK_r5yHUoWwa6GmZGWKYqPnK05Z_rL5Waz3e_XgglYA0DFZfOuOBVc6hXUIN-_mT8UFykdWK4mQ7U6LeiWjjhMHu04RWy7vhtfyu0z9hOOXRjKGxofgit9iOVdIlf-oofO9pTKrzhfM2M_on3shvtyOyQ6tj2VO8I4zMhVxCP9CfHxvDjx2Ce6eO1nxd3V9ufm-2r349v15nK3slDrcQVOE1Yy72C9B2GbGpQQiE4QB46VIusUNkp6p2veaie9FUqQzgTfyBbOiuvF1wU8mKfYHTG-mICd-QeEeG8wjvMCxnvPsJUKFVOV5oAcCbxi2irGG-ey1-fF6ymG3xOl0RzCFIf8fSMarSupBK8yCxaWjSGlSP7_q5yZOR6zxGPmeMxrPFn1aVF1RPRGASKfCv4C822Mvw</recordid><startdate>2023</startdate><enddate>2023</enddate><creator>Wang, Qiucheng</creator><creator>Sun, Weice</creator><creator>Liu, Zhengqing</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0009-0006-9165-2355</orcidid><orcidid>https://orcid.org/0000-0002-9553-1554</orcidid><orcidid>https://orcid.org/0000-0002-3264-4893</orcidid></search><sort><creationdate>2023</creationdate><title>Remanufacturability Evaluation Method for Used Vehicles Based on Stacking Ensemble Learning Framework</title><author>Wang, Qiucheng ; Sun, Weice ; Liu, Zhengqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-3d9ea46334cff32c853722aad2e131a47ecd7a876fd951b9d6fc272e9d2ef86b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Costs</topic><topic>Data models</topic><topic>Ensemble learning</topic><topic>evaluation of remanufacturability</topic><topic>Games</topic><topic>hybrid dataset</topic><topic>Machine learning</topic><topic>Manufacturing processes</topic><topic>Performance evaluation</topic><topic>Predictive models</topic><topic>Production management</topic><topic>Regression</topic><topic>Remanufacturing</topic><topic>remanufacturing data gap</topic><topic>Solid modeling</topic><topic>Stacking</topic><topic>Stacking ensemble learning</topic><topic>Supply chains</topic><topic>Used automobiles</topic><topic>Vehicles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Qiucheng</creatorcontrib><creatorcontrib>Sun, Weice</creatorcontrib><creatorcontrib>Liu, Zhengqing</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Qiucheng</au><au>Sun, Weice</au><au>Liu, Zhengqing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Remanufacturability Evaluation Method for Used Vehicles Based on Stacking Ensemble Learning Framework</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2023</date><risdate>2023</risdate><volume>11</volume><spage>135922</spage><epage>135933</epage><pages>135922-135933</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>This paper proposes a novel method for evaluating the remanufacturability of used vehicles based on Stacking-Based Ensemble Learning Algorithm (SBELA). A method that combines a supply chain evolutionary game model is proposed to construct a Hybrid Dataset (HD), which aims to deal with Remanufacturing Data Gap (RDG). A modified SBELA is used for evaluating the remanufacturability of used vehicles. The results of this investigation show that HD can be used to evaluate remanufacturability in the initial stage of remanufacturing. The modified SBELA significantly improves the evaluation of remanufacturability performance, compared to the Ridge Regression, Lasso Regression, Linear Regression, Stochastic Gradient Descent (SGD), Kneighbors, AdaBoost, and Gradient Boosting Regression (GBR), the Mean Square Error (MSE) has decreased by 51.88%, 53.75%, 52.05%, 58.15%, 8.33%, 57.92%, and 22.22%, respectively. The investigation results demonstrate HD's effectiveness in evaluating remanufacturability during the initial remanufacturing stage. This can provide a reference for newly established remanufacturing enterprises in the RDG dilemma.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2023.3334168</doi><tpages>12</tpages><orcidid>https://orcid.org/0009-0006-9165-2355</orcidid><orcidid>https://orcid.org/0000-0002-9553-1554</orcidid><orcidid>https://orcid.org/0000-0002-3264-4893</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2023, Vol.11, p.135922-135933
issn 2169-3536
2169-3536
language eng
recordid cdi_proquest_journals_2899467214
source IEEE Open Access Journals; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Algorithms
Costs
Data models
Ensemble learning
evaluation of remanufacturability
Games
hybrid dataset
Machine learning
Manufacturing processes
Performance evaluation
Predictive models
Production management
Regression
Remanufacturing
remanufacturing data gap
Solid modeling
Stacking
Stacking ensemble learning
Supply chains
Used automobiles
Vehicles
title Remanufacturability Evaluation Method for Used Vehicles Based on Stacking Ensemble Learning Framework
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A23%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Remanufacturability%20Evaluation%20Method%20for%20Used%20Vehicles%20Based%20on%20Stacking%20Ensemble%20Learning%20Framework&rft.jtitle=IEEE%20access&rft.au=Wang,%20Qiucheng&rft.date=2023&rft.volume=11&rft.spage=135922&rft.epage=135933&rft.pages=135922-135933&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2023.3334168&rft_dat=%3Cproquest_ieee_%3E2899467214%3C/proquest_ieee_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899467214&rft_id=info:pmid/&rft_ieee_id=10320324&rft_doaj_id=oai_doaj_org_article_fff0ab67a7074913a1ae3f709c7018dd&rfr_iscdi=true