A Wind Power Scenario Generation Method Based on Copula Functions and Forecast Errors

The scenario of renewable energy generation significantly affects the probabilistic distribution system analysis. To reflect the probabilistic characteristics of actual data, this paper proposed a scenario generation method that can reflect the spatiotemporal characteristics of wind power generation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Sustainability 2023-12, Vol.15 (23), p.16536
Hauptverfasser: Yoo, Jaehyun, Son, Yongju, Yoon, Myungseok, Choi, Sungyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 23
container_start_page 16536
container_title Sustainability
container_volume 15
creator Yoo, Jaehyun
Son, Yongju
Yoon, Myungseok
Choi, Sungyun
description The scenario of renewable energy generation significantly affects the probabilistic distribution system analysis. To reflect the probabilistic characteristics of actual data, this paper proposed a scenario generation method that can reflect the spatiotemporal characteristics of wind power generation and the probabilistic characteristics of forecast errors. The scenario generation method consists of a process of sampling random numbers and a process of inverse sampling using the cumulative distribution function. In sampling random numbers, random numbers that mimic the spatiotemporal correlation of power generation were generated using the copula function. Furthermore, the cumulative distribution functions of forecast errors according to power generation bins were used, thereby reflecting the probabilistic characteristics of forecast errors. The wind power generation scenarios in Jeju Island, generated by the proposed method, were analyzed through various indices that can assess accuracy. As a result, it was confirmed that by using the proposed scenario generation method, scenarios similar to actual data can be generated, which in turn allows for preparation of situations with a high probability of occurrence within the distribution system.
doi_str_mv 10.3390/su152316536
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2899462421</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A775892997</galeid><sourcerecordid>A775892997</sourcerecordid><originalsourceid>FETCH-LOGICAL-c301t-3528ece32c667259a2a1bb98cf0e079fc6ce974640719888ceb54e2efc919dbd3</originalsourceid><addsrcrecordid>eNpVkU1LAzEQhoMoWLQn_0DAk8jWfOxXjrW0tVBRrMVjyGZn65Y2qUkW9d-bUg_tzGEyM8-bGRiEbigZcC7Ig-9oxjjNM56foR4jBU0oycj50fsS9b1fk2icU0HzHloO8Udravxqv8HhhQajXGvxFAw4FVpr8DOET1vjR-WhxjEf2V23UXjSGb3ve6yifGIdaOUDHjtnnb9GF43aeOj_xyu0nIzfR0_J_GU6Gw3nieaEhoRnrAQNnOk8L1gmFFO0qkSpGwKkEI3ONYgizdO4vyjLUkOVpcCg0YKKuqr5Fbo9_Ltz9qsDH-Tads7EkZKVQqQ5SxmN1OBArdQGZGsaG5zS0WvYttoaaNpYHxZFVgomRBEFdyeCyAT4CSvVeS9ni7dT9v7Aame9d9DInWu3yv1KSuT-LvLoLvwPSL59nQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899462421</pqid></control><display><type>article</type><title>A Wind Power Scenario Generation Method Based on Copula Functions and Forecast Errors</title><source>MDPI - Multidisciplinary Digital Publishing Institute</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Yoo, Jaehyun ; Son, Yongju ; Yoon, Myungseok ; Choi, Sungyun</creator><creatorcontrib>Yoo, Jaehyun ; Son, Yongju ; Yoon, Myungseok ; Choi, Sungyun</creatorcontrib><description>The scenario of renewable energy generation significantly affects the probabilistic distribution system analysis. To reflect the probabilistic characteristics of actual data, this paper proposed a scenario generation method that can reflect the spatiotemporal characteristics of wind power generation and the probabilistic characteristics of forecast errors. The scenario generation method consists of a process of sampling random numbers and a process of inverse sampling using the cumulative distribution function. In sampling random numbers, random numbers that mimic the spatiotemporal correlation of power generation were generated using the copula function. Furthermore, the cumulative distribution functions of forecast errors according to power generation bins were used, thereby reflecting the probabilistic characteristics of forecast errors. The wind power generation scenarios in Jeju Island, generated by the proposed method, were analyzed through various indices that can assess accuracy. As a result, it was confirmed that by using the proposed scenario generation method, scenarios similar to actual data can be generated, which in turn allows for preparation of situations with a high probability of occurrence within the distribution system.</description><identifier>ISSN: 2071-1050</identifier><identifier>EISSN: 2071-1050</identifier><identifier>DOI: 10.3390/su152316536</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Alternative energy sources ; Distribution (Probability theory) ; Electric power production ; Electric vehicle charging stations ; Electric vehicles ; Energy resources ; Green technology ; Methods ; Probability distribution ; Random variables ; Renewable resources ; Systems analysis ; Wind power</subject><ispartof>Sustainability, 2023-12, Vol.15 (23), p.16536</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c301t-3528ece32c667259a2a1bb98cf0e079fc6ce974640719888ceb54e2efc919dbd3</citedby><cites>FETCH-LOGICAL-c301t-3528ece32c667259a2a1bb98cf0e079fc6ce974640719888ceb54e2efc919dbd3</cites><orcidid>0000-0003-3585-7576 ; 0000-0001-8802-2535 ; 0000-0002-8805-1763</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yoo, Jaehyun</creatorcontrib><creatorcontrib>Son, Yongju</creatorcontrib><creatorcontrib>Yoon, Myungseok</creatorcontrib><creatorcontrib>Choi, Sungyun</creatorcontrib><title>A Wind Power Scenario Generation Method Based on Copula Functions and Forecast Errors</title><title>Sustainability</title><description>The scenario of renewable energy generation significantly affects the probabilistic distribution system analysis. To reflect the probabilistic characteristics of actual data, this paper proposed a scenario generation method that can reflect the spatiotemporal characteristics of wind power generation and the probabilistic characteristics of forecast errors. The scenario generation method consists of a process of sampling random numbers and a process of inverse sampling using the cumulative distribution function. In sampling random numbers, random numbers that mimic the spatiotemporal correlation of power generation were generated using the copula function. Furthermore, the cumulative distribution functions of forecast errors according to power generation bins were used, thereby reflecting the probabilistic characteristics of forecast errors. The wind power generation scenarios in Jeju Island, generated by the proposed method, were analyzed through various indices that can assess accuracy. As a result, it was confirmed that by using the proposed scenario generation method, scenarios similar to actual data can be generated, which in turn allows for preparation of situations with a high probability of occurrence within the distribution system.</description><subject>Accuracy</subject><subject>Alternative energy sources</subject><subject>Distribution (Probability theory)</subject><subject>Electric power production</subject><subject>Electric vehicle charging stations</subject><subject>Electric vehicles</subject><subject>Energy resources</subject><subject>Green technology</subject><subject>Methods</subject><subject>Probability distribution</subject><subject>Random variables</subject><subject>Renewable resources</subject><subject>Systems analysis</subject><subject>Wind power</subject><issn>2071-1050</issn><issn>2071-1050</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNpVkU1LAzEQhoMoWLQn_0DAk8jWfOxXjrW0tVBRrMVjyGZn65Y2qUkW9d-bUg_tzGEyM8-bGRiEbigZcC7Ig-9oxjjNM56foR4jBU0oycj50fsS9b1fk2icU0HzHloO8Udravxqv8HhhQajXGvxFAw4FVpr8DOET1vjR-WhxjEf2V23UXjSGb3ve6yifGIdaOUDHjtnnb9GF43aeOj_xyu0nIzfR0_J_GU6Gw3nieaEhoRnrAQNnOk8L1gmFFO0qkSpGwKkEI3ONYgizdO4vyjLUkOVpcCg0YKKuqr5Fbo9_Ltz9qsDH-Tads7EkZKVQqQ5SxmN1OBArdQGZGsaG5zS0WvYttoaaNpYHxZFVgomRBEFdyeCyAT4CSvVeS9ni7dT9v7Aame9d9DInWu3yv1KSuT-LvLoLvwPSL59nQ</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Yoo, Jaehyun</creator><creator>Son, Yongju</creator><creator>Yoon, Myungseok</creator><creator>Choi, Sungyun</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>4U-</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><orcidid>https://orcid.org/0000-0003-3585-7576</orcidid><orcidid>https://orcid.org/0000-0001-8802-2535</orcidid><orcidid>https://orcid.org/0000-0002-8805-1763</orcidid></search><sort><creationdate>20231201</creationdate><title>A Wind Power Scenario Generation Method Based on Copula Functions and Forecast Errors</title><author>Yoo, Jaehyun ; Son, Yongju ; Yoon, Myungseok ; Choi, Sungyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c301t-3528ece32c667259a2a1bb98cf0e079fc6ce974640719888ceb54e2efc919dbd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Accuracy</topic><topic>Alternative energy sources</topic><topic>Distribution (Probability theory)</topic><topic>Electric power production</topic><topic>Electric vehicle charging stations</topic><topic>Electric vehicles</topic><topic>Energy resources</topic><topic>Green technology</topic><topic>Methods</topic><topic>Probability distribution</topic><topic>Random variables</topic><topic>Renewable resources</topic><topic>Systems analysis</topic><topic>Wind power</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yoo, Jaehyun</creatorcontrib><creatorcontrib>Son, Yongju</creatorcontrib><creatorcontrib>Yoon, Myungseok</creatorcontrib><creatorcontrib>Choi, Sungyun</creatorcontrib><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>University Readers</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Sustainability</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yoo, Jaehyun</au><au>Son, Yongju</au><au>Yoon, Myungseok</au><au>Choi, Sungyun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Wind Power Scenario Generation Method Based on Copula Functions and Forecast Errors</atitle><jtitle>Sustainability</jtitle><date>2023-12-01</date><risdate>2023</risdate><volume>15</volume><issue>23</issue><spage>16536</spage><pages>16536-</pages><issn>2071-1050</issn><eissn>2071-1050</eissn><abstract>The scenario of renewable energy generation significantly affects the probabilistic distribution system analysis. To reflect the probabilistic characteristics of actual data, this paper proposed a scenario generation method that can reflect the spatiotemporal characteristics of wind power generation and the probabilistic characteristics of forecast errors. The scenario generation method consists of a process of sampling random numbers and a process of inverse sampling using the cumulative distribution function. In sampling random numbers, random numbers that mimic the spatiotemporal correlation of power generation were generated using the copula function. Furthermore, the cumulative distribution functions of forecast errors according to power generation bins were used, thereby reflecting the probabilistic characteristics of forecast errors. The wind power generation scenarios in Jeju Island, generated by the proposed method, were analyzed through various indices that can assess accuracy. As a result, it was confirmed that by using the proposed scenario generation method, scenarios similar to actual data can be generated, which in turn allows for preparation of situations with a high probability of occurrence within the distribution system.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/su152316536</doi><orcidid>https://orcid.org/0000-0003-3585-7576</orcidid><orcidid>https://orcid.org/0000-0001-8802-2535</orcidid><orcidid>https://orcid.org/0000-0002-8805-1763</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2071-1050
ispartof Sustainability, 2023-12, Vol.15 (23), p.16536
issn 2071-1050
2071-1050
language eng
recordid cdi_proquest_journals_2899462421
source MDPI - Multidisciplinary Digital Publishing Institute; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals
subjects Accuracy
Alternative energy sources
Distribution (Probability theory)
Electric power production
Electric vehicle charging stations
Electric vehicles
Energy resources
Green technology
Methods
Probability distribution
Random variables
Renewable resources
Systems analysis
Wind power
title A Wind Power Scenario Generation Method Based on Copula Functions and Forecast Errors
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T01%3A09%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Wind%20Power%20Scenario%20Generation%20Method%20Based%20on%20Copula%20Functions%20and%20Forecast%20Errors&rft.jtitle=Sustainability&rft.au=Yoo,%20Jaehyun&rft.date=2023-12-01&rft.volume=15&rft.issue=23&rft.spage=16536&rft.pages=16536-&rft.issn=2071-1050&rft.eissn=2071-1050&rft_id=info:doi/10.3390/su152316536&rft_dat=%3Cgale_proqu%3EA775892997%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899462421&rft_id=info:pmid/&rft_galeid=A775892997&rfr_iscdi=true