On (m, n)-absorbing prime ideals and (m, n)-absorbing ideals of commutative rings

Let R be a commutative ring with nonzero identity. In this paper, we introduce and investigate a generalization of 1-absorbing prime ideals. Let m ,  n be nonzero positive integers such that m > n . A proper ideal I of R is said to be an ( m ,  n )-absorbing prime ideal if whenever nonunit elemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:São Paulo Journal of Mathematical Sciences 2023-12, Vol.17 (2), p.888-901
Hauptverfasser: Badawi, Ayman, El Khalfi, Abdelhaq, Mahdou, Najib
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let R be a commutative ring with nonzero identity. In this paper, we introduce and investigate a generalization of 1-absorbing prime ideals. Let m ,  n be nonzero positive integers such that m > n . A proper ideal I of R is said to be an ( m ,  n )-absorbing prime ideal if whenever nonunit elements a 1 , . . . , a m ∈ R and a 1 . . . a m ∈ I , then a 1 . . . a n ∈ I or a n + 1 . . . a m ∈ I . We give some basic properties of this class of ideals and we study ( m ,  n )-absorbing prime ideals of localization of rings, direct product of rings and trivial ring extensions. A proper ideal I of R is called an AB -( m ,  n )-absorbing ideal of R if whenever a 1 ⋯ a m ∈ I for some elements a 1 , . . . , a m ∈ R , then there are n of the a i ’s whose product is in I . A proper ideal I of R is called an ( m ,  n )-absorbing ideal of R if whenever a 1 ⋯ a m ∈ I for some nonunit elements a 1 , . . . , a m ∈ R , then there are n of the a i ’s whose product is in I . We study some connections between ( m ,  n )-absorbing prime ideals, ( m ,  n )-absorbing ideals and AB -( m ,  n )-absorbing ideals of commutative rings.
ISSN:1982-6907
2316-9028
2306-9028
DOI:10.1007/s40863-022-00349-1