On (m, n)-absorbing prime ideals and (m, n)-absorbing ideals of commutative rings
Let R be a commutative ring with nonzero identity. In this paper, we introduce and investigate a generalization of 1-absorbing prime ideals. Let m , n be nonzero positive integers such that m > n . A proper ideal I of R is said to be an ( m , n )-absorbing prime ideal if whenever nonunit elemen...
Gespeichert in:
Veröffentlicht in: | São Paulo Journal of Mathematical Sciences 2023-12, Vol.17 (2), p.888-901 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
R
be a commutative ring with nonzero identity. In this paper, we introduce and investigate a generalization of 1-absorbing prime ideals. Let
m
,
n
be nonzero positive integers such that
m
>
n
. A proper ideal
I
of
R
is said to be an (
m
,
n
)-absorbing prime ideal if whenever nonunit elements
a
1
,
.
.
.
,
a
m
∈
R
and
a
1
.
.
.
a
m
∈
I
, then
a
1
.
.
.
a
n
∈
I
or
a
n
+
1
.
.
.
a
m
∈
I
.
We give some basic properties of this class of ideals and we study (
m
,
n
)-absorbing prime ideals of localization of rings, direct product of rings and trivial ring extensions. A proper ideal
I
of
R
is called an
AB
-(
m
,
n
)-absorbing ideal of
R
if whenever
a
1
⋯
a
m
∈
I
for some elements
a
1
,
.
.
.
,
a
m
∈
R
, then there are
n
of the
a
i
’s whose product is in
I
. A proper ideal
I
of
R
is called an (
m
,
n
)-absorbing ideal of
R
if whenever
a
1
⋯
a
m
∈
I
for some nonunit elements
a
1
,
.
.
.
,
a
m
∈
R
, then there are
n
of the
a
i
’s whose product is in
I
. We study some connections between (
m
,
n
)-absorbing prime ideals, (
m
,
n
)-absorbing ideals and
AB
-(
m
,
n
)-absorbing ideals of commutative rings. |
---|---|
ISSN: | 1982-6907 2316-9028 2306-9028 |
DOI: | 10.1007/s40863-022-00349-1 |