Task-Parameterized Imitation Learning with Time-Sensitive Constraints
Programming a robot manipulator should be as intuitive as possible. To achieve that, the paradigm of teaching motion skills by providing few demonstrations has become widely popular in recent years. Probabilistic versions thereof take into account the uncertainty given by the distribution of the tra...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-12 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | arXiv.org |
container_volume | |
creator | Richter, Julian Oliveira, João Scheurer, Christian Steil, Jochen Dehio, Niels |
description | Programming a robot manipulator should be as intuitive as possible. To achieve that, the paradigm of teaching motion skills by providing few demonstrations has become widely popular in recent years. Probabilistic versions thereof take into account the uncertainty given by the distribution of the training data. However, precise execution of start-, via-, and end-poses at given times can not always be guaranteed. This limits the technology transfer to industrial application. To address this problem, we propose a novel constrained formulation of the Expectation Maximization algorithm for learning Gaussian Mixture Models (GMM) on Riemannian Manifolds. Our approach applies to probabilistic imitation learning and extends also to the well-established TP-GMM framework with Task-Parameterization. It allows to prescribe end-effector poses at defined execution times, for instance for precise pick & place scenarios. The probabilistic approach is compared with state-of-the-art learning-from-demonstration methods using the KUKA LBR iiwa robot. The reader is encouraged to watch the accompanying video available at https://youtu.be/JMI1YxtN9C0 |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2899321062</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899321062</sourcerecordid><originalsourceid>FETCH-proquest_journals_28993210623</originalsourceid><addsrcrecordid>eNqNyrEKwjAQgOEgCBbtOwScA2liazuXioKDYHcJeOpVm2juquDT6-ADOP3D949EYqzNVLkwZiJSok5rbYqlyXObiKZ1dFU7F10PDBHfcJSbHtkxBi-34KJHf5Yv5ItssQe1B0_I-ARZB08cHXqmmRif3I0g_XUq5qumrdfqHsNjAOJDF4bov3QwZVVZk-nC2P-uD7l0O3M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899321062</pqid></control><display><type>article</type><title>Task-Parameterized Imitation Learning with Time-Sensitive Constraints</title><source>Free E- Journals</source><creator>Richter, Julian ; Oliveira, João ; Scheurer, Christian ; Steil, Jochen ; Dehio, Niels</creator><creatorcontrib>Richter, Julian ; Oliveira, João ; Scheurer, Christian ; Steil, Jochen ; Dehio, Niels</creatorcontrib><description>Programming a robot manipulator should be as intuitive as possible. To achieve that, the paradigm of teaching motion skills by providing few demonstrations has become widely popular in recent years. Probabilistic versions thereof take into account the uncertainty given by the distribution of the training data. However, precise execution of start-, via-, and end-poses at given times can not always be guaranteed. This limits the technology transfer to industrial application. To address this problem, we propose a novel constrained formulation of the Expectation Maximization algorithm for learning Gaussian Mixture Models (GMM) on Riemannian Manifolds. Our approach applies to probabilistic imitation learning and extends also to the well-established TP-GMM framework with Task-Parameterization. It allows to prescribe end-effector poses at defined execution times, for instance for precise pick & place scenarios. The probabilistic approach is compared with state-of-the-art learning-from-demonstration methods using the KUKA LBR iiwa robot. The reader is encouraged to watch the accompanying video available at https://youtu.be/JMI1YxtN9C0</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Algorithms ; Constraints ; End effectors ; Industrial applications ; Machine learning ; Parameterization ; Probabilistic models ; Riemann manifold ; Robot arms ; Technology transfer</subject><ispartof>arXiv.org, 2023-12</ispartof><rights>2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>776,780</link.rule.ids></links><search><creatorcontrib>Richter, Julian</creatorcontrib><creatorcontrib>Oliveira, João</creatorcontrib><creatorcontrib>Scheurer, Christian</creatorcontrib><creatorcontrib>Steil, Jochen</creatorcontrib><creatorcontrib>Dehio, Niels</creatorcontrib><title>Task-Parameterized Imitation Learning with Time-Sensitive Constraints</title><title>arXiv.org</title><description>Programming a robot manipulator should be as intuitive as possible. To achieve that, the paradigm of teaching motion skills by providing few demonstrations has become widely popular in recent years. Probabilistic versions thereof take into account the uncertainty given by the distribution of the training data. However, precise execution of start-, via-, and end-poses at given times can not always be guaranteed. This limits the technology transfer to industrial application. To address this problem, we propose a novel constrained formulation of the Expectation Maximization algorithm for learning Gaussian Mixture Models (GMM) on Riemannian Manifolds. Our approach applies to probabilistic imitation learning and extends also to the well-established TP-GMM framework with Task-Parameterization. It allows to prescribe end-effector poses at defined execution times, for instance for precise pick & place scenarios. The probabilistic approach is compared with state-of-the-art learning-from-demonstration methods using the KUKA LBR iiwa robot. The reader is encouraged to watch the accompanying video available at https://youtu.be/JMI1YxtN9C0</description><subject>Algorithms</subject><subject>Constraints</subject><subject>End effectors</subject><subject>Industrial applications</subject><subject>Machine learning</subject><subject>Parameterization</subject><subject>Probabilistic models</subject><subject>Riemann manifold</subject><subject>Robot arms</subject><subject>Technology transfer</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNyrEKwjAQgOEgCBbtOwScA2liazuXioKDYHcJeOpVm2juquDT6-ADOP3D949EYqzNVLkwZiJSok5rbYqlyXObiKZ1dFU7F10PDBHfcJSbHtkxBi-34KJHf5Yv5ItssQe1B0_I-ARZB08cHXqmmRif3I0g_XUq5qumrdfqHsNjAOJDF4bov3QwZVVZk-nC2P-uD7l0O3M</recordid><startdate>20231206</startdate><enddate>20231206</enddate><creator>Richter, Julian</creator><creator>Oliveira, João</creator><creator>Scheurer, Christian</creator><creator>Steil, Jochen</creator><creator>Dehio, Niels</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20231206</creationdate><title>Task-Parameterized Imitation Learning with Time-Sensitive Constraints</title><author>Richter, Julian ; Oliveira, João ; Scheurer, Christian ; Steil, Jochen ; Dehio, Niels</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28993210623</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Constraints</topic><topic>End effectors</topic><topic>Industrial applications</topic><topic>Machine learning</topic><topic>Parameterization</topic><topic>Probabilistic models</topic><topic>Riemann manifold</topic><topic>Robot arms</topic><topic>Technology transfer</topic><toplevel>online_resources</toplevel><creatorcontrib>Richter, Julian</creatorcontrib><creatorcontrib>Oliveira, João</creatorcontrib><creatorcontrib>Scheurer, Christian</creatorcontrib><creatorcontrib>Steil, Jochen</creatorcontrib><creatorcontrib>Dehio, Niels</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richter, Julian</au><au>Oliveira, João</au><au>Scheurer, Christian</au><au>Steil, Jochen</au><au>Dehio, Niels</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Task-Parameterized Imitation Learning with Time-Sensitive Constraints</atitle><jtitle>arXiv.org</jtitle><date>2023-12-06</date><risdate>2023</risdate><eissn>2331-8422</eissn><abstract>Programming a robot manipulator should be as intuitive as possible. To achieve that, the paradigm of teaching motion skills by providing few demonstrations has become widely popular in recent years. Probabilistic versions thereof take into account the uncertainty given by the distribution of the training data. However, precise execution of start-, via-, and end-poses at given times can not always be guaranteed. This limits the technology transfer to industrial application. To address this problem, we propose a novel constrained formulation of the Expectation Maximization algorithm for learning Gaussian Mixture Models (GMM) on Riemannian Manifolds. Our approach applies to probabilistic imitation learning and extends also to the well-established TP-GMM framework with Task-Parameterization. It allows to prescribe end-effector poses at defined execution times, for instance for precise pick & place scenarios. The probabilistic approach is compared with state-of-the-art learning-from-demonstration methods using the KUKA LBR iiwa robot. The reader is encouraged to watch the accompanying video available at https://youtu.be/JMI1YxtN9C0</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2331-8422 |
ispartof | arXiv.org, 2023-12 |
issn | 2331-8422 |
language | eng |
recordid | cdi_proquest_journals_2899321062 |
source | Free E- Journals |
subjects | Algorithms Constraints End effectors Industrial applications Machine learning Parameterization Probabilistic models Riemann manifold Robot arms Technology transfer |
title | Task-Parameterized Imitation Learning with Time-Sensitive Constraints |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T17%3A35%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Task-Parameterized%20Imitation%20Learning%20with%20Time-Sensitive%20Constraints&rft.jtitle=arXiv.org&rft.au=Richter,%20Julian&rft.date=2023-12-06&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2899321062%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899321062&rft_id=info:pmid/&rfr_iscdi=true |