Adjustment of Sentinel-3 Spectral Bands With Sentinel-2 to Enhance the Quality of Spatio-Temporally Fused Images
Spatiotemporal fusion (STF) methods are a paramount solution for generating high spatial and temporal time series, overcoming the limitations of spatial and temporal resolution of satellite data. STF methods typically rely on band-by-band fusion, assuming spectral similarities. However, selecting th...
Gespeichert in:
Veröffentlicht in: | IEEE journal of selected topics in applied earth observations and remote sensing 2024, Vol.17, p.584-600 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 600 |
---|---|
container_issue | |
container_start_page | 584 |
container_title | IEEE journal of selected topics in applied earth observations and remote sensing |
container_volume | 17 |
creator | Boumahdi, Meryeme Garcia-Pedrero, Angel Lillo-Saavedra, Mario Gonzalo-Martin, Consuelo |
description | Spatiotemporal fusion (STF) methods are a paramount solution for generating high spatial and temporal time series, overcoming the limitations of spatial and temporal resolution of satellite data. STF methods typically rely on band-by-band fusion, assuming spectral similarities. However, selecting the optimal band for fusion becomes challenging when multiple narrow bands overlap with the target band, often leading to the use of only one single band. Furthermore, sensor specifications and observation configurations can further compound this challenge, reducing spectral and spatial information. We introduce a new preprocessing step that maximizes the use of spectral information from narrow bands. It minimizes radiometric differences caused by sensor variations in the STF process by considering the spectral response function (SRF). Our method generates adjusted bands that closely match the target band's spectral characteristics, leveraging all available spectral information. We evaluated this strategy at two study sites employing Sentinel 2 and Sentinel 3 data by comparing fused images from adjusted bands and the original bands using three popular STF methods. The results obtained showed that the images fused with the adjusted bands were closer to the target images and achieved better performance, improving the fusion quality compared to the original bands (SAM by 37% and RMSE by 30%). The preprocessing step offers a feasible approach to generate spectral bands that would be captured by the sensors if they had the same spectral characteristics. Importantly, this preprocessing technique is applicable to any STF method. |
doi_str_mv | 10.1109/JSTARS.2023.3333275 |
format | Article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_journals_2899221731</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10318948</ieee_id><doaj_id>oai_doaj_org_article_cd3ad994749944adbfff1da04f8c2aff</doaj_id><sourcerecordid>2899221731</sourcerecordid><originalsourceid>FETCH-LOGICAL-c359t-37f3b7dd37a20e8c87bbdc1da8fffb0a95688f55e56167e0bfe9e524e55548ea3</originalsourceid><addsrcrecordid>eNpNUUtvEzEQXiGQCIVfAAdLnDf4GdvHULUQVAlBgjhaXnvcbLRZL7b3kH9ft1sBc5iRZr7HSF_TvCd4TQjWn77tD9uf-zXFlK1ZLSrFi2ZFiSAtEUy8bFZEM90Sjvnr5k3OJ4w3VGq2aqatP825nGEsKAa0r7MfYWgZ2k_gSrID-mxHn9Hvvhz_nSkqEd2MRzs6QOUI6Mdsh75cnjQmW_rYHuA8xcofLuh2zuDR7mzvIb9tXgU7ZHj3PK-aX7c3h-uv7d33L7vr7V3rmNClZTKwTnrPpKUYlFOy67wj3qoQQoetFhulghAgNmQjAXcBNAjKQQjBFVh21ewWXR_tyUypP9t0MdH25mkR072xqfRuAOM8s15rLnlt3PquWlQnzINy1IZQtT4uWlOKf2bIxZzinMb6vqFKa0qJZKSi2IJyKeacIPx1Jdg8xmSWmMxjTOY5psr6sLB6APiPwYjSXLEHwDGQIw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899221731</pqid></control><display><type>article</type><title>Adjustment of Sentinel-3 Spectral Bands With Sentinel-2 to Enhance the Quality of Spatio-Temporally Fused Images</title><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Boumahdi, Meryeme ; Garcia-Pedrero, Angel ; Lillo-Saavedra, Mario ; Gonzalo-Martin, Consuelo</creator><creatorcontrib>Boumahdi, Meryeme ; Garcia-Pedrero, Angel ; Lillo-Saavedra, Mario ; Gonzalo-Martin, Consuelo</creatorcontrib><description>Spatiotemporal fusion (STF) methods are a paramount solution for generating high spatial and temporal time series, overcoming the limitations of spatial and temporal resolution of satellite data. STF methods typically rely on band-by-band fusion, assuming spectral similarities. However, selecting the optimal band for fusion becomes challenging when multiple narrow bands overlap with the target band, often leading to the use of only one single band. Furthermore, sensor specifications and observation configurations can further compound this challenge, reducing spectral and spatial information. We introduce a new preprocessing step that maximizes the use of spectral information from narrow bands. It minimizes radiometric differences caused by sensor variations in the STF process by considering the spectral response function (SRF). Our method generates adjusted bands that closely match the target band's spectral characteristics, leveraging all available spectral information. We evaluated this strategy at two study sites employing Sentinel 2 and Sentinel 3 data by comparing fused images from adjusted bands and the original bands using three popular STF methods. The results obtained showed that the images fused with the adjusted bands were closer to the target images and achieved better performance, improving the fusion quality compared to the original bands (SAM by 37% and RMSE by 30%). The preprocessing step offers a feasible approach to generate spectral bands that would be captured by the sensors if they had the same spectral characteristics. Importantly, this preprocessing technique is applicable to any STF method.</description><identifier>ISSN: 1939-1404</identifier><identifier>EISSN: 2151-1535</identifier><identifier>DOI: 10.1109/JSTARS.2023.3333275</identifier><identifier>CODEN: IJSTHZ</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Band adjustment ; Band spectra ; bands overlapping ; Earth ; Image enhancement ; Image quality ; Preprocessing ; Radiometry ; Remote sensing ; Response functions ; Sensors ; Sentinel-2 ; Sentinel-3 OLCI ; Spatial data ; Spatial resolution ; spatiotemporal data fusion ; Spatiotemporal phenomena ; Spectral bands ; spectral response function (SRF) ; Spectral sensitivity ; Temporal resolution ; Terrestrial atmosphere ; Time series analysis</subject><ispartof>IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.584-600</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c359t-37f3b7dd37a20e8c87bbdc1da8fffb0a95688f55e56167e0bfe9e524e55548ea3</cites><orcidid>0000-0003-0600-8137 ; 0000-0002-6848-481X ; 0000-0002-0804-9293 ; 0000-0001-5634-9162</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,4024,27923,27924,27925</link.rule.ids></links><search><creatorcontrib>Boumahdi, Meryeme</creatorcontrib><creatorcontrib>Garcia-Pedrero, Angel</creatorcontrib><creatorcontrib>Lillo-Saavedra, Mario</creatorcontrib><creatorcontrib>Gonzalo-Martin, Consuelo</creatorcontrib><title>Adjustment of Sentinel-3 Spectral Bands With Sentinel-2 to Enhance the Quality of Spatio-Temporally Fused Images</title><title>IEEE journal of selected topics in applied earth observations and remote sensing</title><addtitle>JSTARS</addtitle><description>Spatiotemporal fusion (STF) methods are a paramount solution for generating high spatial and temporal time series, overcoming the limitations of spatial and temporal resolution of satellite data. STF methods typically rely on band-by-band fusion, assuming spectral similarities. However, selecting the optimal band for fusion becomes challenging when multiple narrow bands overlap with the target band, often leading to the use of only one single band. Furthermore, sensor specifications and observation configurations can further compound this challenge, reducing spectral and spatial information. We introduce a new preprocessing step that maximizes the use of spectral information from narrow bands. It minimizes radiometric differences caused by sensor variations in the STF process by considering the spectral response function (SRF). Our method generates adjusted bands that closely match the target band's spectral characteristics, leveraging all available spectral information. We evaluated this strategy at two study sites employing Sentinel 2 and Sentinel 3 data by comparing fused images from adjusted bands and the original bands using three popular STF methods. The results obtained showed that the images fused with the adjusted bands were closer to the target images and achieved better performance, improving the fusion quality compared to the original bands (SAM by 37% and RMSE by 30%). The preprocessing step offers a feasible approach to generate spectral bands that would be captured by the sensors if they had the same spectral characteristics. Importantly, this preprocessing technique is applicable to any STF method.</description><subject>Band adjustment</subject><subject>Band spectra</subject><subject>bands overlapping</subject><subject>Earth</subject><subject>Image enhancement</subject><subject>Image quality</subject><subject>Preprocessing</subject><subject>Radiometry</subject><subject>Remote sensing</subject><subject>Response functions</subject><subject>Sensors</subject><subject>Sentinel-2</subject><subject>Sentinel-3 OLCI</subject><subject>Spatial data</subject><subject>Spatial resolution</subject><subject>spatiotemporal data fusion</subject><subject>Spatiotemporal phenomena</subject><subject>Spectral bands</subject><subject>spectral response function (SRF)</subject><subject>Spectral sensitivity</subject><subject>Temporal resolution</subject><subject>Terrestrial atmosphere</subject><subject>Time series analysis</subject><issn>1939-1404</issn><issn>2151-1535</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>RIE</sourceid><sourceid>DOA</sourceid><recordid>eNpNUUtvEzEQXiGQCIVfAAdLnDf4GdvHULUQVAlBgjhaXnvcbLRZL7b3kH9ft1sBc5iRZr7HSF_TvCd4TQjWn77tD9uf-zXFlK1ZLSrFi2ZFiSAtEUy8bFZEM90Sjvnr5k3OJ4w3VGq2aqatP825nGEsKAa0r7MfYWgZ2k_gSrID-mxHn9Hvvhz_nSkqEd2MRzs6QOUI6Mdsh75cnjQmW_rYHuA8xcofLuh2zuDR7mzvIb9tXgU7ZHj3PK-aX7c3h-uv7d33L7vr7V3rmNClZTKwTnrPpKUYlFOy67wj3qoQQoetFhulghAgNmQjAXcBNAjKQQjBFVh21ewWXR_tyUypP9t0MdH25mkR072xqfRuAOM8s15rLnlt3PquWlQnzINy1IZQtT4uWlOKf2bIxZzinMb6vqFKa0qJZKSi2IJyKeacIPx1Jdg8xmSWmMxjTOY5psr6sLB6APiPwYjSXLEHwDGQIw</recordid><startdate>2024</startdate><enddate>2024</enddate><creator>Boumahdi, Meryeme</creator><creator>Garcia-Pedrero, Angel</creator><creator>Lillo-Saavedra, Mario</creator><creator>Gonzalo-Martin, Consuelo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0600-8137</orcidid><orcidid>https://orcid.org/0000-0002-6848-481X</orcidid><orcidid>https://orcid.org/0000-0002-0804-9293</orcidid><orcidid>https://orcid.org/0000-0001-5634-9162</orcidid></search><sort><creationdate>2024</creationdate><title>Adjustment of Sentinel-3 Spectral Bands With Sentinel-2 to Enhance the Quality of Spatio-Temporally Fused Images</title><author>Boumahdi, Meryeme ; Garcia-Pedrero, Angel ; Lillo-Saavedra, Mario ; Gonzalo-Martin, Consuelo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c359t-37f3b7dd37a20e8c87bbdc1da8fffb0a95688f55e56167e0bfe9e524e55548ea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Band adjustment</topic><topic>Band spectra</topic><topic>bands overlapping</topic><topic>Earth</topic><topic>Image enhancement</topic><topic>Image quality</topic><topic>Preprocessing</topic><topic>Radiometry</topic><topic>Remote sensing</topic><topic>Response functions</topic><topic>Sensors</topic><topic>Sentinel-2</topic><topic>Sentinel-3 OLCI</topic><topic>Spatial data</topic><topic>Spatial resolution</topic><topic>spatiotemporal data fusion</topic><topic>Spatiotemporal phenomena</topic><topic>Spectral bands</topic><topic>spectral response function (SRF)</topic><topic>Spectral sensitivity</topic><topic>Temporal resolution</topic><topic>Terrestrial atmosphere</topic><topic>Time series analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boumahdi, Meryeme</creatorcontrib><creatorcontrib>Garcia-Pedrero, Angel</creatorcontrib><creatorcontrib>Lillo-Saavedra, Mario</creatorcontrib><creatorcontrib>Gonzalo-Martin, Consuelo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boumahdi, Meryeme</au><au>Garcia-Pedrero, Angel</au><au>Lillo-Saavedra, Mario</au><au>Gonzalo-Martin, Consuelo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adjustment of Sentinel-3 Spectral Bands With Sentinel-2 to Enhance the Quality of Spatio-Temporally Fused Images</atitle><jtitle>IEEE journal of selected topics in applied earth observations and remote sensing</jtitle><stitle>JSTARS</stitle><date>2024</date><risdate>2024</risdate><volume>17</volume><spage>584</spage><epage>600</epage><pages>584-600</pages><issn>1939-1404</issn><eissn>2151-1535</eissn><coden>IJSTHZ</coden><abstract>Spatiotemporal fusion (STF) methods are a paramount solution for generating high spatial and temporal time series, overcoming the limitations of spatial and temporal resolution of satellite data. STF methods typically rely on band-by-band fusion, assuming spectral similarities. However, selecting the optimal band for fusion becomes challenging when multiple narrow bands overlap with the target band, often leading to the use of only one single band. Furthermore, sensor specifications and observation configurations can further compound this challenge, reducing spectral and spatial information. We introduce a new preprocessing step that maximizes the use of spectral information from narrow bands. It minimizes radiometric differences caused by sensor variations in the STF process by considering the spectral response function (SRF). Our method generates adjusted bands that closely match the target band's spectral characteristics, leveraging all available spectral information. We evaluated this strategy at two study sites employing Sentinel 2 and Sentinel 3 data by comparing fused images from adjusted bands and the original bands using three popular STF methods. The results obtained showed that the images fused with the adjusted bands were closer to the target images and achieved better performance, improving the fusion quality compared to the original bands (SAM by 37% and RMSE by 30%). The preprocessing step offers a feasible approach to generate spectral bands that would be captured by the sensors if they had the same spectral characteristics. Importantly, this preprocessing technique is applicable to any STF method.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JSTARS.2023.3333275</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0003-0600-8137</orcidid><orcidid>https://orcid.org/0000-0002-6848-481X</orcidid><orcidid>https://orcid.org/0000-0002-0804-9293</orcidid><orcidid>https://orcid.org/0000-0001-5634-9162</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-1404 |
ispartof | IEEE journal of selected topics in applied earth observations and remote sensing, 2024, Vol.17, p.584-600 |
issn | 1939-1404 2151-1535 |
language | eng |
recordid | cdi_proquest_journals_2899221731 |
source | DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals |
subjects | Band adjustment Band spectra bands overlapping Earth Image enhancement Image quality Preprocessing Radiometry Remote sensing Response functions Sensors Sentinel-2 Sentinel-3 OLCI Spatial data Spatial resolution spatiotemporal data fusion Spatiotemporal phenomena Spectral bands spectral response function (SRF) Spectral sensitivity Temporal resolution Terrestrial atmosphere Time series analysis |
title | Adjustment of Sentinel-3 Spectral Bands With Sentinel-2 to Enhance the Quality of Spatio-Temporally Fused Images |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T19%3A38%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adjustment%20of%20Sentinel-3%20Spectral%20Bands%20With%20Sentinel-2%20to%20Enhance%20the%20Quality%20of%20Spatio-Temporally%20Fused%20Images&rft.jtitle=IEEE%20journal%20of%20selected%20topics%20in%20applied%20earth%20observations%20and%20remote%20sensing&rft.au=Boumahdi,%20Meryeme&rft.date=2024&rft.volume=17&rft.spage=584&rft.epage=600&rft.pages=584-600&rft.issn=1939-1404&rft.eissn=2151-1535&rft.coden=IJSTHZ&rft_id=info:doi/10.1109/JSTARS.2023.3333275&rft_dat=%3Cproquest_doaj_%3E2899221731%3C/proquest_doaj_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899221731&rft_id=info:pmid/&rft_ieee_id=10318948&rft_doaj_id=oai_doaj_org_article_cd3ad994749944adbfff1da04f8c2aff&rfr_iscdi=true |