Determining initial conditions for nonlinear hyperbolic equations with time dimensional reduction and the Carleman contraction

This paper aims to determine the initial conditions for quasi-linear hyperbolic equations that include nonlocal elements. We suggest a method where we approximate the solution of the hyperbolic equation by truncating its Fourier series in the time domain with a polynomial-exponential basis. This tru...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-06
Hauptverfasser: Dang, Trong D, Nguyen, Loc H, Vu, Huong T T
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Dang, Trong D
Nguyen, Loc H
Vu, Huong T T
description This paper aims to determine the initial conditions for quasi-linear hyperbolic equations that include nonlocal elements. We suggest a method where we approximate the solution of the hyperbolic equation by truncating its Fourier series in the time domain with a polynomial-exponential basis. This truncation effectively removes the time variable, transforming the problem into a system of quasi-linear elliptic equations. We refer to this technique as the "time dimensional reduction method." To numerically solve this system comprehensively without the need for an accurate initial estimate, we used the newly developed Carleman contraction principle. We show the efficiency of our method through various numerical examples. The time dimensional reduction method stands out not only for its precise solutions but also for its remarkable speed in computation.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2899131963</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899131963</sourcerecordid><originalsourceid>FETCH-proquest_journals_28991319633</originalsourceid><addsrcrecordid>eNqNjMsKwjAQRYMgWNR_GHAttImvrn3gB7iX2I42kk7aSYq48dtN1Q9wc-9l5nAGIpFKZfPNQsqRmHp_T9NUrtZyuVSJeO0wINeGDN0gZjDaQuGojMuRh6tjIEfWEGqG6tkgX5w1BWDb6S_yMKGCYGqEMgb5eIwOxrIregA0lRAqhK1mi7WmXh9Yf54TMbxq63H667GYHfan7XHesGs79OF8dx1Hnz_LTZ5nKstXSv1HvQGbwlHg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899131963</pqid></control><display><type>article</type><title>Determining initial conditions for nonlinear hyperbolic equations with time dimensional reduction and the Carleman contraction</title><source>Free E- Journals</source><creator>Dang, Trong D ; Nguyen, Loc H ; Vu, Huong T T</creator><creatorcontrib>Dang, Trong D ; Nguyen, Loc H ; Vu, Huong T T</creatorcontrib><description>This paper aims to determine the initial conditions for quasi-linear hyperbolic equations that include nonlocal elements. We suggest a method where we approximate the solution of the hyperbolic equation by truncating its Fourier series in the time domain with a polynomial-exponential basis. This truncation effectively removes the time variable, transforming the problem into a system of quasi-linear elliptic equations. We refer to this technique as the "time dimensional reduction method." To numerically solve this system comprehensively without the need for an accurate initial estimate, we used the newly developed Carleman contraction principle. We show the efficiency of our method through various numerical examples. The time dimensional reduction method stands out not only for its precise solutions but also for its remarkable speed in computation.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Elliptic functions ; Initial conditions ; Polynomials ; Reduction</subject><ispartof>arXiv.org, 2024-06</ispartof><rights>2024. This work is published under http://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Dang, Trong D</creatorcontrib><creatorcontrib>Nguyen, Loc H</creatorcontrib><creatorcontrib>Vu, Huong T T</creatorcontrib><title>Determining initial conditions for nonlinear hyperbolic equations with time dimensional reduction and the Carleman contraction</title><title>arXiv.org</title><description>This paper aims to determine the initial conditions for quasi-linear hyperbolic equations that include nonlocal elements. We suggest a method where we approximate the solution of the hyperbolic equation by truncating its Fourier series in the time domain with a polynomial-exponential basis. This truncation effectively removes the time variable, transforming the problem into a system of quasi-linear elliptic equations. We refer to this technique as the "time dimensional reduction method." To numerically solve this system comprehensively without the need for an accurate initial estimate, we used the newly developed Carleman contraction principle. We show the efficiency of our method through various numerical examples. The time dimensional reduction method stands out not only for its precise solutions but also for its remarkable speed in computation.</description><subject>Elliptic functions</subject><subject>Initial conditions</subject><subject>Polynomials</subject><subject>Reduction</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNjMsKwjAQRYMgWNR_GHAttImvrn3gB7iX2I42kk7aSYq48dtN1Q9wc-9l5nAGIpFKZfPNQsqRmHp_T9NUrtZyuVSJeO0wINeGDN0gZjDaQuGojMuRh6tjIEfWEGqG6tkgX5w1BWDb6S_yMKGCYGqEMgb5eIwOxrIregA0lRAqhK1mi7WmXh9Yf54TMbxq63H667GYHfan7XHesGs79OF8dx1Hnz_LTZ5nKstXSv1HvQGbwlHg</recordid><startdate>20240611</startdate><enddate>20240611</enddate><creator>Dang, Trong D</creator><creator>Nguyen, Loc H</creator><creator>Vu, Huong T T</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240611</creationdate><title>Determining initial conditions for nonlinear hyperbolic equations with time dimensional reduction and the Carleman contraction</title><author>Dang, Trong D ; Nguyen, Loc H ; Vu, Huong T T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28991319633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Elliptic functions</topic><topic>Initial conditions</topic><topic>Polynomials</topic><topic>Reduction</topic><toplevel>online_resources</toplevel><creatorcontrib>Dang, Trong D</creatorcontrib><creatorcontrib>Nguyen, Loc H</creatorcontrib><creatorcontrib>Vu, Huong T T</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dang, Trong D</au><au>Nguyen, Loc H</au><au>Vu, Huong T T</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Determining initial conditions for nonlinear hyperbolic equations with time dimensional reduction and the Carleman contraction</atitle><jtitle>arXiv.org</jtitle><date>2024-06-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>This paper aims to determine the initial conditions for quasi-linear hyperbolic equations that include nonlocal elements. We suggest a method where we approximate the solution of the hyperbolic equation by truncating its Fourier series in the time domain with a polynomial-exponential basis. This truncation effectively removes the time variable, transforming the problem into a system of quasi-linear elliptic equations. We refer to this technique as the "time dimensional reduction method." To numerically solve this system comprehensively without the need for an accurate initial estimate, we used the newly developed Carleman contraction principle. We show the efficiency of our method through various numerical examples. The time dimensional reduction method stands out not only for its precise solutions but also for its remarkable speed in computation.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-06
issn 2331-8422
language eng
recordid cdi_proquest_journals_2899131963
source Free E- Journals
subjects Elliptic functions
Initial conditions
Polynomials
Reduction
title Determining initial conditions for nonlinear hyperbolic equations with time dimensional reduction and the Carleman contraction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T16%3A36%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Determining%20initial%20conditions%20for%20nonlinear%20hyperbolic%20equations%20with%20time%20dimensional%20reduction%20and%20the%20Carleman%20contraction&rft.jtitle=arXiv.org&rft.au=Dang,%20Trong%20D&rft.date=2024-06-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2899131963%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899131963&rft_id=info:pmid/&rfr_iscdi=true