On the efficiency of long short-term memory in classifying musical impressions from EEG recordings
The objective of this study is the classification of musical impressions with long short-term memory (LSTM) approach using EEG recordings of 20 subjects, while listening to different music genres. For this purpose, a deep learning model was developed, where relevant features extracted from intrinsic...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 1 |
container_start_page | |
container_title | |
container_volume | 2879 |
creator | Kaya, Burak Habiboglu, M. Gokhan Moghaddamnia, Sanam |
description | The objective of this study is the classification of musical impressions with long short-term memory (LSTM) approach using EEG recordings of 20 subjects, while listening to different music genres. For this purpose, a deep learning model was developed, where relevant features extracted from intrinsic mode functions (IMF) of the clean EEG data are used as the input signals. The classification accuracy of the proposed model is evaluated with various feature sets. The highest classification accuracy is 73.33%, which is achieved by combining higher-order statistics and the first difference of IMF features. |
doi_str_mv | 10.1063/12.0023973 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>proquest_scita</sourceid><recordid>TN_cdi_proquest_journals_2899114245</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899114245</sourcerecordid><originalsourceid>FETCH-LOGICAL-p134t-be11ed8622e89b7ca00540e06e33a8f5737e947301af67f6fc3414940deb95c13</originalsourceid><addsrcrecordid>eNot0EFLwzAUB_AgCs7pxU8Q8CideUnaNEcZcwqDXRS8lTR9cRltU5Pu0G9vZTs9ePz4v8efkEdgK2CFeAG-YowLrcQVWUCeQ6YKKK7JgjEtMy7F9y25S-k4I61UuSD1vqfjASk6563H3k40ONqG_oemQ4hjNmLsaIddiBP1PbWtScm7yc-gOyVvTUt9N0Sct6FP1MXQ0c1mSyPaEJuZpXty40yb8OEyl-TrbfO5fs92--3H-nWXDSDkmNUIgE1ZcI6lrpU1jOWSIStQCFO6XAmFWirBwLhCucJZIUFqyRqsdW5BLMnTOXeI4feEaayO4RT7-WTFS60BJJf5rJ7PKlk_mnF-uhqi70ycKmDVf4kV8OpSovgD7K5kDA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype><pqid>2899114245</pqid></control><display><type>conference_proceeding</type><title>On the efficiency of long short-term memory in classifying musical impressions from EEG recordings</title><source>AIP Journals Complete</source><creator>Kaya, Burak ; Habiboglu, M. Gokhan ; Moghaddamnia, Sanam</creator><contributor>Cakalli, Huseyin ; Canak, Ibrahim ; Dik, Mehmet ; Kandemir, Hacer Sengul ; Gurtug, Ozay ; Ashyralyev, Allaberen ; Harte, Robin ; Akay, Kadri Ulas ; Kocinac, Ljubisa D. R. ; Aral, Nazlim Deniz ; Ucgun, Filiz Cagatay ; Savas, Ekrem ; Ashyralyyev, Charyyar ; Tez, Mujgan</contributor><creatorcontrib>Kaya, Burak ; Habiboglu, M. Gokhan ; Moghaddamnia, Sanam ; Cakalli, Huseyin ; Canak, Ibrahim ; Dik, Mehmet ; Kandemir, Hacer Sengul ; Gurtug, Ozay ; Ashyralyev, Allaberen ; Harte, Robin ; Akay, Kadri Ulas ; Kocinac, Ljubisa D. R. ; Aral, Nazlim Deniz ; Ucgun, Filiz Cagatay ; Savas, Ekrem ; Ashyralyyev, Charyyar ; Tez, Mujgan</creatorcontrib><description>The objective of this study is the classification of musical impressions with long short-term memory (LSTM) approach using EEG recordings of 20 subjects, while listening to different music genres. For this purpose, a deep learning model was developed, where relevant features extracted from intrinsic mode functions (IMF) of the clean EEG data are used as the input signals. The classification accuracy of the proposed model is evaluated with various feature sets. The highest classification accuracy is 73.33%, which is achieved by combining higher-order statistics and the first difference of IMF features.</description><identifier>ISSN: 0094-243X</identifier><identifier>EISSN: 1551-7616</identifier><identifier>DOI: 10.1063/12.0023973</identifier><identifier>CODEN: APCPCS</identifier><language>eng</language><publisher>Melville: American Institute of Physics</publisher><subject>Electroencephalography ; Signal classification</subject><ispartof>AIP conference proceedings, 2023, Vol.2879 (1)</ispartof><rights>Author(s)</rights><rights>2023 Author(s). Published by AIP Publishing.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://pubs.aip.org/acp/article-lookup/doi/10.1063/12.0023973$$EHTML$$P50$$Gscitation$$H</linktohtml><link.rule.ids>309,310,314,776,780,785,786,790,4498,23909,23910,25118,27901,27902,76127</link.rule.ids></links><search><contributor>Cakalli, Huseyin</contributor><contributor>Canak, Ibrahim</contributor><contributor>Dik, Mehmet</contributor><contributor>Kandemir, Hacer Sengul</contributor><contributor>Gurtug, Ozay</contributor><contributor>Ashyralyev, Allaberen</contributor><contributor>Harte, Robin</contributor><contributor>Akay, Kadri Ulas</contributor><contributor>Kocinac, Ljubisa D. R.</contributor><contributor>Aral, Nazlim Deniz</contributor><contributor>Ucgun, Filiz Cagatay</contributor><contributor>Savas, Ekrem</contributor><contributor>Ashyralyyev, Charyyar</contributor><contributor>Tez, Mujgan</contributor><creatorcontrib>Kaya, Burak</creatorcontrib><creatorcontrib>Habiboglu, M. Gokhan</creatorcontrib><creatorcontrib>Moghaddamnia, Sanam</creatorcontrib><title>On the efficiency of long short-term memory in classifying musical impressions from EEG recordings</title><title>AIP conference proceedings</title><description>The objective of this study is the classification of musical impressions with long short-term memory (LSTM) approach using EEG recordings of 20 subjects, while listening to different music genres. For this purpose, a deep learning model was developed, where relevant features extracted from intrinsic mode functions (IMF) of the clean EEG data are used as the input signals. The classification accuracy of the proposed model is evaluated with various feature sets. The highest classification accuracy is 73.33%, which is achieved by combining higher-order statistics and the first difference of IMF features.</description><subject>Electroencephalography</subject><subject>Signal classification</subject><issn>0094-243X</issn><issn>1551-7616</issn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2023</creationdate><recordtype>conference_proceeding</recordtype><recordid>eNot0EFLwzAUB_AgCs7pxU8Q8CideUnaNEcZcwqDXRS8lTR9cRltU5Pu0G9vZTs9ePz4v8efkEdgK2CFeAG-YowLrcQVWUCeQ6YKKK7JgjEtMy7F9y25S-k4I61UuSD1vqfjASk6563H3k40ONqG_oemQ4hjNmLsaIddiBP1PbWtScm7yc-gOyVvTUt9N0Sct6FP1MXQ0c1mSyPaEJuZpXty40yb8OEyl-TrbfO5fs92--3H-nWXDSDkmNUIgE1ZcI6lrpU1jOWSIStQCFO6XAmFWirBwLhCucJZIUFqyRqsdW5BLMnTOXeI4feEaayO4RT7-WTFS60BJJf5rJ7PKlk_mnF-uhqi70ycKmDVf4kV8OpSovgD7K5kDA</recordid><startdate>20231009</startdate><enddate>20231009</enddate><creator>Kaya, Burak</creator><creator>Habiboglu, M. Gokhan</creator><creator>Moghaddamnia, Sanam</creator><general>American Institute of Physics</general><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20231009</creationdate><title>On the efficiency of long short-term memory in classifying musical impressions from EEG recordings</title><author>Kaya, Burak ; Habiboglu, M. Gokhan ; Moghaddamnia, Sanam</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p134t-be11ed8622e89b7ca00540e06e33a8f5737e947301af67f6fc3414940deb95c13</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Electroencephalography</topic><topic>Signal classification</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaya, Burak</creatorcontrib><creatorcontrib>Habiboglu, M. Gokhan</creatorcontrib><creatorcontrib>Moghaddamnia, Sanam</creatorcontrib><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaya, Burak</au><au>Habiboglu, M. Gokhan</au><au>Moghaddamnia, Sanam</au><au>Cakalli, Huseyin</au><au>Canak, Ibrahim</au><au>Dik, Mehmet</au><au>Kandemir, Hacer Sengul</au><au>Gurtug, Ozay</au><au>Ashyralyev, Allaberen</au><au>Harte, Robin</au><au>Akay, Kadri Ulas</au><au>Kocinac, Ljubisa D. R.</au><au>Aral, Nazlim Deniz</au><au>Ucgun, Filiz Cagatay</au><au>Savas, Ekrem</au><au>Ashyralyyev, Charyyar</au><au>Tez, Mujgan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>On the efficiency of long short-term memory in classifying musical impressions from EEG recordings</atitle><btitle>AIP conference proceedings</btitle><date>2023-10-09</date><risdate>2023</risdate><volume>2879</volume><issue>1</issue><issn>0094-243X</issn><eissn>1551-7616</eissn><coden>APCPCS</coden><abstract>The objective of this study is the classification of musical impressions with long short-term memory (LSTM) approach using EEG recordings of 20 subjects, while listening to different music genres. For this purpose, a deep learning model was developed, where relevant features extracted from intrinsic mode functions (IMF) of the clean EEG data are used as the input signals. The classification accuracy of the proposed model is evaluated with various feature sets. The highest classification accuracy is 73.33%, which is achieved by combining higher-order statistics and the first difference of IMF features.</abstract><cop>Melville</cop><pub>American Institute of Physics</pub><doi>10.1063/12.0023973</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0094-243X |
ispartof | AIP conference proceedings, 2023, Vol.2879 (1) |
issn | 0094-243X 1551-7616 |
language | eng |
recordid | cdi_proquest_journals_2899114245 |
source | AIP Journals Complete |
subjects | Electroencephalography Signal classification |
title | On the efficiency of long short-term memory in classifying musical impressions from EEG recordings |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T15%3A11%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_scita&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=On%20the%20efficiency%20of%20long%20short-term%20memory%20in%20classifying%20musical%20impressions%20from%20EEG%20recordings&rft.btitle=AIP%20conference%20proceedings&rft.au=Kaya,%20Burak&rft.date=2023-10-09&rft.volume=2879&rft.issue=1&rft.issn=0094-243X&rft.eissn=1551-7616&rft.coden=APCPCS&rft_id=info:doi/10.1063/12.0023973&rft_dat=%3Cproquest_scita%3E2899114245%3C/proquest_scita%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899114245&rft_id=info:pmid/&rfr_iscdi=true |