Uncertainty Principles for the q-Hankel–Stockwell Transform
By using the q -Jackson integral and some elements of the q -harmonic analysis associated with the q -Hankel transform, we introduce and study a q -analog of the Hankel–Stockwell transform. We present some properties from harmonic analysis (Plancherel formula, inversion formula, reproducing kernel,...
Gespeichert in:
Veröffentlicht in: | Ukrainian mathematical journal 2023-12, Vol.75 (7), p.1016-1033 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1033 |
---|---|
container_issue | 7 |
container_start_page | 1016 |
container_title | Ukrainian mathematical journal |
container_volume | 75 |
creator | Brahim, Kamel Elmonser, Hédi Ben |
description | By using the
q
-Jackson integral and some elements of the
q
-harmonic analysis associated with the
q
-Hankel transform, we introduce and study a
q
-analog of the Hankel–Stockwell transform. We present some properties from harmonic analysis (Plancherel formula, inversion formula, reproducing kernel, etc.). Furthermore, we establish a version of Heisenberg’s uncertainty principles. Finally, we study the
q
-Hankel–Stockwell transform on a subset of finite measure. |
doi_str_mv | 10.1007/s11253-023-02244-0 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2899097144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899097144</sourcerecordid><originalsourceid>FETCH-LOGICAL-c270t-57c8c483524d72dc77171ff4388c3fdf6bb53d3b0c4aebb6cb0a4a50e17a65473</originalsourceid><addsrcrecordid>eNp9kM1KAzEQgIMoWKsv4GnBc3Tyt9k9eJCiVigo2J5DNpvotttsm6xIb76Db-iTmLqCNw_DXL5vBj6EzglcEgB5FQmhgmGg-6GcYzhAIyIkwyWT-SEaAXCCRVmKY3QS4xIgaYUcoeuFNzb0uvH9LnsKjTfNprUxc13I-lebbfFU-5Vtvz4-n_vOrN5t22bzoH1MxPoUHTndRnv2u8docXc7n0zx7PH-YXIzw4ZK6LGQpjC8YILyWtLaSEkkcY6zojDM1S6vKsFqVoHh2lZVbirQXAuwROpccMnG6GK4uwnd9s3GXi27t-DTS0WLsoRSEs4TRQfKhC7GYJ3ahGatw04RUPtMasikUib1k0lBktggxQT7Fxv-Tv9jfQO52mtF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899097144</pqid></control><display><type>article</type><title>Uncertainty Principles for the q-Hankel–Stockwell Transform</title><source>SpringerNature Journals</source><creator>Brahim, Kamel ; Elmonser, Hédi Ben</creator><creatorcontrib>Brahim, Kamel ; Elmonser, Hédi Ben</creatorcontrib><description>By using the
q
-Jackson integral and some elements of the
q
-harmonic analysis associated with the
q
-Hankel transform, we introduce and study a
q
-analog of the Hankel–Stockwell transform. We present some properties from harmonic analysis (Plancherel formula, inversion formula, reproducing kernel, etc.). Furthermore, we establish a version of Heisenberg’s uncertainty principles. Finally, we study the
q
-Hankel–Stockwell transform on a subset of finite measure.</description><identifier>ISSN: 0041-5995</identifier><identifier>EISSN: 1573-9376</identifier><identifier>DOI: 10.1007/s11253-023-02244-0</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Algebra ; Analysis ; Applications of Mathematics ; Fourier analysis ; Geometry ; Harmonic analysis ; Mathematics ; Mathematics and Statistics ; Principles ; Statistics ; Uncertainty principles</subject><ispartof>Ukrainian mathematical journal, 2023-12, Vol.75 (7), p.1016-1033</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c270t-57c8c483524d72dc77171ff4388c3fdf6bb53d3b0c4aebb6cb0a4a50e17a65473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11253-023-02244-0$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11253-023-02244-0$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Brahim, Kamel</creatorcontrib><creatorcontrib>Elmonser, Hédi Ben</creatorcontrib><title>Uncertainty Principles for the q-Hankel–Stockwell Transform</title><title>Ukrainian mathematical journal</title><addtitle>Ukr Math J</addtitle><description>By using the
q
-Jackson integral and some elements of the
q
-harmonic analysis associated with the
q
-Hankel transform, we introduce and study a
q
-analog of the Hankel–Stockwell transform. We present some properties from harmonic analysis (Plancherel formula, inversion formula, reproducing kernel, etc.). Furthermore, we establish a version of Heisenberg’s uncertainty principles. Finally, we study the
q
-Hankel–Stockwell transform on a subset of finite measure.</description><subject>Algebra</subject><subject>Analysis</subject><subject>Applications of Mathematics</subject><subject>Fourier analysis</subject><subject>Geometry</subject><subject>Harmonic analysis</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Principles</subject><subject>Statistics</subject><subject>Uncertainty principles</subject><issn>0041-5995</issn><issn>1573-9376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp9kM1KAzEQgIMoWKsv4GnBc3Tyt9k9eJCiVigo2J5DNpvotttsm6xIb76Db-iTmLqCNw_DXL5vBj6EzglcEgB5FQmhgmGg-6GcYzhAIyIkwyWT-SEaAXCCRVmKY3QS4xIgaYUcoeuFNzb0uvH9LnsKjTfNprUxc13I-lebbfFU-5Vtvz4-n_vOrN5t22bzoH1MxPoUHTndRnv2u8docXc7n0zx7PH-YXIzw4ZK6LGQpjC8YILyWtLaSEkkcY6zojDM1S6vKsFqVoHh2lZVbirQXAuwROpccMnG6GK4uwnd9s3GXi27t-DTS0WLsoRSEs4TRQfKhC7GYJ3ahGatw04RUPtMasikUib1k0lBktggxQT7Fxv-Tv9jfQO52mtF</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Brahim, Kamel</creator><creator>Elmonser, Hédi Ben</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231201</creationdate><title>Uncertainty Principles for the q-Hankel–Stockwell Transform</title><author>Brahim, Kamel ; Elmonser, Hédi Ben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c270t-57c8c483524d72dc77171ff4388c3fdf6bb53d3b0c4aebb6cb0a4a50e17a65473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algebra</topic><topic>Analysis</topic><topic>Applications of Mathematics</topic><topic>Fourier analysis</topic><topic>Geometry</topic><topic>Harmonic analysis</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Principles</topic><topic>Statistics</topic><topic>Uncertainty principles</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Brahim, Kamel</creatorcontrib><creatorcontrib>Elmonser, Hédi Ben</creatorcontrib><collection>CrossRef</collection><jtitle>Ukrainian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Brahim, Kamel</au><au>Elmonser, Hédi Ben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncertainty Principles for the q-Hankel–Stockwell Transform</atitle><jtitle>Ukrainian mathematical journal</jtitle><stitle>Ukr Math J</stitle><date>2023-12-01</date><risdate>2023</risdate><volume>75</volume><issue>7</issue><spage>1016</spage><epage>1033</epage><pages>1016-1033</pages><issn>0041-5995</issn><eissn>1573-9376</eissn><abstract>By using the
q
-Jackson integral and some elements of the
q
-harmonic analysis associated with the
q
-Hankel transform, we introduce and study a
q
-analog of the Hankel–Stockwell transform. We present some properties from harmonic analysis (Plancherel formula, inversion formula, reproducing kernel, etc.). Furthermore, we establish a version of Heisenberg’s uncertainty principles. Finally, we study the
q
-Hankel–Stockwell transform on a subset of finite measure.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s11253-023-02244-0</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0041-5995 |
ispartof | Ukrainian mathematical journal, 2023-12, Vol.75 (7), p.1016-1033 |
issn | 0041-5995 1573-9376 |
language | eng |
recordid | cdi_proquest_journals_2899097144 |
source | SpringerNature Journals |
subjects | Algebra Analysis Applications of Mathematics Fourier analysis Geometry Harmonic analysis Mathematics Mathematics and Statistics Principles Statistics Uncertainty principles |
title | Uncertainty Principles for the q-Hankel–Stockwell Transform |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A24%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncertainty%20Principles%20for%20the%20q-Hankel%E2%80%93Stockwell%20Transform&rft.jtitle=Ukrainian%20mathematical%20journal&rft.au=Brahim,%20Kamel&rft.date=2023-12-01&rft.volume=75&rft.issue=7&rft.spage=1016&rft.epage=1033&rft.pages=1016-1033&rft.issn=0041-5995&rft.eissn=1573-9376&rft_id=info:doi/10.1007/s11253-023-02244-0&rft_dat=%3Cproquest_cross%3E2899097144%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899097144&rft_id=info:pmid/&rfr_iscdi=true |