On the Distribution of a Random Power Series on the Dyadic Half-Line

We consider an analog of the problem of the existence of the summable distributional density of a random variable in the form of power series on the dyadic half-line which was originally proposed and partially solved by Erdös on the standard real line. Given a random variable  as a series of the pow...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Siberian mathematical journal 2023-11, Vol.64 (6), p.1319-1329
1. Verfasser: Karapetyants, M. A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1329
container_issue 6
container_start_page 1319
container_title Siberian mathematical journal
container_volume 64
creator Karapetyants, M. A.
description We consider an analog of the problem of the existence of the summable distributional density of a random variable in the form of power series on the dyadic half-line which was originally proposed and partially solved by Erdös on the standard real line. Given a random variable  as a series of the powers of , we address the question of  such that the density of  belongs to the space of the function whose modulus is summable on the dyadic half-line. We answer the question for some values of  , and consider the so-called dual problem when is fixed, but the coefficients of the formula for  have more degrees of freedom. Also we obtain some criteria for the existence of density in terms of the solution of the refinement equation tied directly to  as well as in terms of the coefficients defining  .
doi_str_mv 10.1134/S0037446623060071
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2899097135</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2899097135</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-339ff35b3b8b69d509a542fb7661fc36d55f0629ecb74779d51f1b8f1940f5123</originalsourceid><addsrcrecordid>eNp1kMFKAzEURYMoWKsf4C7gevS9ZJJMllKrFQoVq-shmUl0SjupyRTp3_gtfplTWnAhrt7innMfXEIuEa4ReX4zB-Aqz6VkHCSAwiMyQKF4ppmEYzLYxdkuPyVnKS0AEEDqARnPWtq9O3rXpC42dtM1oaXBU_P99WzaOqzoU_h0kc5dbFyi4UBvTd1UdGKWPps2rTsnJ94sk7s43CF5vR-_jCbZdPbwOLqdZhWTRZdxrr3nwnJbWKlrAdqInHmrpERfcVkL4UEy7SqrcqV6Aj3awqPOwQtkfEiu9r3rGD42LnXlImxi278sWaE1aIVc9BTuqSqGlKLz5To2KxO3JUK5W6v8s1bvsL2TerZ9c_G3-X_pBwS9ac0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2899097135</pqid></control><display><type>article</type><title>On the Distribution of a Random Power Series on the Dyadic Half-Line</title><source>SpringerLink Journals - AutoHoldings</source><creator>Karapetyants, M. A.</creator><creatorcontrib>Karapetyants, M. A.</creatorcontrib><description>We consider an analog of the problem of the existence of the summable distributional density of a random variable in the form of power series on the dyadic half-line which was originally proposed and partially solved by Erdös on the standard real line. Given a random variable  as a series of the powers of , we address the question of  such that the density of  belongs to the space of the function whose modulus is summable on the dyadic half-line. We answer the question for some values of  , and consider the so-called dual problem when is fixed, but the coefficients of the formula for  have more degrees of freedom. Also we obtain some criteria for the existence of density in terms of the solution of the refinement equation tied directly to  as well as in terms of the coefficients defining  .</description><identifier>ISSN: 0037-4466</identifier><identifier>EISSN: 1573-9260</identifier><identifier>DOI: 10.1134/S0037446623060071</identifier><language>eng</language><publisher>Moscow: Pleiades Publishing</publisher><subject>Density ; Mathematics ; Mathematics and Statistics ; Power series ; Questions ; Random variables</subject><ispartof>Siberian mathematical journal, 2023-11, Vol.64 (6), p.1319-1329</ispartof><rights>Pleiades Publishing, Ltd. 2023. Russian Text © The Author(s), 2023, published in Sibirskii Matematicheskii Zhurnal, 2023, Vol. 64, No. 6, pp. 1186–1198.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-339ff35b3b8b69d509a542fb7661fc36d55f0629ecb74779d51f1b8f1940f5123</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1134/S0037446623060071$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1134/S0037446623060071$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids></links><search><creatorcontrib>Karapetyants, M. A.</creatorcontrib><title>On the Distribution of a Random Power Series on the Dyadic Half-Line</title><title>Siberian mathematical journal</title><addtitle>Sib Math J</addtitle><description>We consider an analog of the problem of the existence of the summable distributional density of a random variable in the form of power series on the dyadic half-line which was originally proposed and partially solved by Erdös on the standard real line. Given a random variable  as a series of the powers of , we address the question of  such that the density of  belongs to the space of the function whose modulus is summable on the dyadic half-line. We answer the question for some values of  , and consider the so-called dual problem when is fixed, but the coefficients of the formula for  have more degrees of freedom. Also we obtain some criteria for the existence of density in terms of the solution of the refinement equation tied directly to  as well as in terms of the coefficients defining  .</description><subject>Density</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Power series</subject><subject>Questions</subject><subject>Random variables</subject><issn>0037-4466</issn><issn>1573-9260</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kMFKAzEURYMoWKsf4C7gevS9ZJJMllKrFQoVq-shmUl0SjupyRTp3_gtfplTWnAhrt7innMfXEIuEa4ReX4zB-Aqz6VkHCSAwiMyQKF4ppmEYzLYxdkuPyVnKS0AEEDqARnPWtq9O3rXpC42dtM1oaXBU_P99WzaOqzoU_h0kc5dbFyi4UBvTd1UdGKWPps2rTsnJ94sk7s43CF5vR-_jCbZdPbwOLqdZhWTRZdxrr3nwnJbWKlrAdqInHmrpERfcVkL4UEy7SqrcqV6Aj3awqPOwQtkfEiu9r3rGD42LnXlImxi278sWaE1aIVc9BTuqSqGlKLz5To2KxO3JUK5W6v8s1bvsL2TerZ9c_G3-X_pBwS9ac0</recordid><startdate>20231101</startdate><enddate>20231101</enddate><creator>Karapetyants, M. A.</creator><general>Pleiades Publishing</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>20231101</creationdate><title>On the Distribution of a Random Power Series on the Dyadic Half-Line</title><author>Karapetyants, M. A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-339ff35b3b8b69d509a542fb7661fc36d55f0629ecb74779d51f1b8f1940f5123</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Density</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Power series</topic><topic>Questions</topic><topic>Random variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karapetyants, M. A.</creatorcontrib><collection>CrossRef</collection><jtitle>Siberian mathematical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karapetyants, M. A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the Distribution of a Random Power Series on the Dyadic Half-Line</atitle><jtitle>Siberian mathematical journal</jtitle><stitle>Sib Math J</stitle><date>2023-11-01</date><risdate>2023</risdate><volume>64</volume><issue>6</issue><spage>1319</spage><epage>1329</epage><pages>1319-1329</pages><issn>0037-4466</issn><eissn>1573-9260</eissn><abstract>We consider an analog of the problem of the existence of the summable distributional density of a random variable in the form of power series on the dyadic half-line which was originally proposed and partially solved by Erdös on the standard real line. Given a random variable  as a series of the powers of , we address the question of  such that the density of  belongs to the space of the function whose modulus is summable on the dyadic half-line. We answer the question for some values of  , and consider the so-called dual problem when is fixed, but the coefficients of the formula for  have more degrees of freedom. Also we obtain some criteria for the existence of density in terms of the solution of the refinement equation tied directly to  as well as in terms of the coefficients defining  .</abstract><cop>Moscow</cop><pub>Pleiades Publishing</pub><doi>10.1134/S0037446623060071</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0037-4466
ispartof Siberian mathematical journal, 2023-11, Vol.64 (6), p.1319-1329
issn 0037-4466
1573-9260
language eng
recordid cdi_proquest_journals_2899097135
source SpringerLink Journals - AutoHoldings
subjects Density
Mathematics
Mathematics and Statistics
Power series
Questions
Random variables
title On the Distribution of a Random Power Series on the Dyadic Half-Line
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T18%3A47%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20Distribution%20of%20a%C2%A0Random%20Power%20Series%20on%20the%20Dyadic%20Half-Line&rft.jtitle=Siberian%20mathematical%20journal&rft.au=Karapetyants,%20M.%20A.&rft.date=2023-11-01&rft.volume=64&rft.issue=6&rft.spage=1319&rft.epage=1329&rft.pages=1319-1329&rft.issn=0037-4466&rft.eissn=1573-9260&rft_id=info:doi/10.1134/S0037446623060071&rft_dat=%3Cproquest_cross%3E2899097135%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2899097135&rft_id=info:pmid/&rfr_iscdi=true