Identifying the Physical Origin of Gamma-Ray Bursts with Supervised Machine Learning

The empirical classification of gamma-ray bursts (GRBs) into long and short GRBs based on their durations is already firmly established. This empirical classification is generally linked to the physical classification of GRBs originating from compact binary mergers and GRBs originating from massive...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Astrophysical journal 2023-12, Vol.959 (1), p.44
Hauptverfasser: Luo, Jia-Wei, Wang, Fei-Fei, Zhu-Ge, Jia-Ming, Li, Ye, Zou, Yuan-Chuan, Zhang, Bing
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 44
container_title The Astrophysical journal
container_volume 959
creator Luo, Jia-Wei
Wang, Fei-Fei
Zhu-Ge, Jia-Ming
Li, Ye
Zou, Yuan-Chuan
Zhang, Bing
description The empirical classification of gamma-ray bursts (GRBs) into long and short GRBs based on their durations is already firmly established. This empirical classification is generally linked to the physical classification of GRBs originating from compact binary mergers and GRBs originating from massive star collapses, or Type I and II GRBs, with the majority of short GRBs belonging to Type I and the majority of long GRBs belonging to Type II. However, there is a significant overlap in the duration distributions of long and short GRBs. Furthermore, some intermingled GRBs, i.e., short-duration Type II and long-duration Type I GRBs, have been reported. A multiparameter classification scheme of GRBs is evidently needed. In this paper, we seek to build such a classification scheme with supervised machine-learning methods, chiefly XGBoost . We utilize the GRB Big Table and Greiner’s GRB catalog and divide the input features into three subgroups: prompt emission, afterglow, and host galaxy. We find that the prompt emission subgroup performs the best in distinguishing between Type I and II GRBs. We also find the most important distinguishing features in prompt emission to be T 90 , the hardness ratio, and fluence. After building the machine-learning model, we apply it to the currently unclassified GRBs to predict their probabilities of being either GRB class, and we assign the most probable class of each GRB to be its possible physical class.
doi_str_mv 10.3847/1538-4357/ad03ec
format Article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_journals_2898476193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6b6e93166b7f4329a4a65bbcd94e4300</doaj_id><sourcerecordid>2898476193</sourcerecordid><originalsourceid>FETCH-LOGICAL-c445t-7eed2c1bd463aa00fe511b97b27b191ae01e65a7dd582638ba38d5d0a6d5ad443</originalsourceid><addsrcrecordid>eNp1kc1v2zAMxYWiA5Z2ve8ooD3OrWR92Dp2RZcFyNCizYDdBMqiEwWJ7UlOh_z3c-ohu7QngsR7PxKPhHzm7FqUsrjhSpSZFKq4Ac8EVidkchydkgljTGZaFL8-krOU1oc2N2ZCFjOPTR_qfWiWtF8hfVztU6hgQx9iWIaGtjWdwnYL2RPs6dddTH2if0K_os-7DuNLSOjpD6hWoUE6R4jNAPpEPtSwSXjxr56Tn9_uF3ffs_nDdHZ3O88qKVWfFYg-r7jzUgsAxmpUnDtTuLxw3HBAxlErKLxXZa5F6UCUXnkG2ivwUopzMhu5voW17WLYQtzbFoJ9HbRxaSH2odqg1U6jEVxrV9RS5AYkaOVc5Y1EKRgbWJcjq4vt7x2m3q7bXWyG821emiFhzY0YVGxUVbFNKWJ93MqZPfzBHkK3h9Dt-IfBcjVaQtv9Z0K3tkYZy62UtvP1IPvyhuxd6l_NFJXa</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898476193</pqid></control><display><type>article</type><title>Identifying the Physical Origin of Gamma-Ray Bursts with Supervised Machine Learning</title><source>IOP Publishing Free Content</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Luo, Jia-Wei ; Wang, Fei-Fei ; Zhu-Ge, Jia-Ming ; Li, Ye ; Zou, Yuan-Chuan ; Zhang, Bing</creator><creatorcontrib>Luo, Jia-Wei ; Wang, Fei-Fei ; Zhu-Ge, Jia-Ming ; Li, Ye ; Zou, Yuan-Chuan ; Zhang, Bing</creatorcontrib><description>The empirical classification of gamma-ray bursts (GRBs) into long and short GRBs based on their durations is already firmly established. This empirical classification is generally linked to the physical classification of GRBs originating from compact binary mergers and GRBs originating from massive star collapses, or Type I and II GRBs, with the majority of short GRBs belonging to Type I and the majority of long GRBs belonging to Type II. However, there is a significant overlap in the duration distributions of long and short GRBs. Furthermore, some intermingled GRBs, i.e., short-duration Type II and long-duration Type I GRBs, have been reported. A multiparameter classification scheme of GRBs is evidently needed. In this paper, we seek to build such a classification scheme with supervised machine-learning methods, chiefly XGBoost . We utilize the GRB Big Table and Greiner’s GRB catalog and divide the input features into three subgroups: prompt emission, afterglow, and host galaxy. We find that the prompt emission subgroup performs the best in distinguishing between Type I and II GRBs. We also find the most important distinguishing features in prompt emission to be T 90 , the hardness ratio, and fluence. After building the machine-learning model, we apply it to the currently unclassified GRBs to predict their probabilities of being either GRB class, and we assign the most probable class of each GRB to be its possible physical class.</description><identifier>ISSN: 0004-637X</identifier><identifier>EISSN: 1538-4357</identifier><identifier>DOI: 10.3847/1538-4357/ad03ec</identifier><language>eng</language><publisher>Philadelphia: The American Astronomical Society</publisher><subject>Afterglows ; Astronomy data analysis ; Astrophysics ; Binary stars ; Classification ; Classification schemes ; Emission ; Fluence ; Galaxies ; Gamma ray astronomy ; Gamma ray bursts ; Gamma rays ; Machine learning ; Massive stars ; Subgroups ; Supervised learning</subject><ispartof>The Astrophysical journal, 2023-12, Vol.959 (1), p.44</ispartof><rights>2023. The Author(s). Published by the American Astronomical Society.</rights><rights>2023. The Author(s). Published by the American Astronomical Society. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c445t-7eed2c1bd463aa00fe511b97b27b191ae01e65a7dd582638ba38d5d0a6d5ad443</citedby><cites>FETCH-LOGICAL-c445t-7eed2c1bd463aa00fe511b97b27b191ae01e65a7dd582638ba38d5d0a6d5ad443</cites><orcidid>0000-0002-9642-9682 ; 0000-0002-5400-3261 ; 0000-0002-9725-2524</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://iopscience.iop.org/article/10.3847/1538-4357/ad03ec/pdf$$EPDF$$P50$$Giop$$Hfree_for_read</linktopdf><link.rule.ids>314,776,780,860,2096,27901,27902,38867,53842</link.rule.ids></links><search><creatorcontrib>Luo, Jia-Wei</creatorcontrib><creatorcontrib>Wang, Fei-Fei</creatorcontrib><creatorcontrib>Zhu-Ge, Jia-Ming</creatorcontrib><creatorcontrib>Li, Ye</creatorcontrib><creatorcontrib>Zou, Yuan-Chuan</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><title>Identifying the Physical Origin of Gamma-Ray Bursts with Supervised Machine Learning</title><title>The Astrophysical journal</title><addtitle>APJ</addtitle><addtitle>Astrophys. J</addtitle><description>The empirical classification of gamma-ray bursts (GRBs) into long and short GRBs based on their durations is already firmly established. This empirical classification is generally linked to the physical classification of GRBs originating from compact binary mergers and GRBs originating from massive star collapses, or Type I and II GRBs, with the majority of short GRBs belonging to Type I and the majority of long GRBs belonging to Type II. However, there is a significant overlap in the duration distributions of long and short GRBs. Furthermore, some intermingled GRBs, i.e., short-duration Type II and long-duration Type I GRBs, have been reported. A multiparameter classification scheme of GRBs is evidently needed. In this paper, we seek to build such a classification scheme with supervised machine-learning methods, chiefly XGBoost . We utilize the GRB Big Table and Greiner’s GRB catalog and divide the input features into three subgroups: prompt emission, afterglow, and host galaxy. We find that the prompt emission subgroup performs the best in distinguishing between Type I and II GRBs. We also find the most important distinguishing features in prompt emission to be T 90 , the hardness ratio, and fluence. After building the machine-learning model, we apply it to the currently unclassified GRBs to predict their probabilities of being either GRB class, and we assign the most probable class of each GRB to be its possible physical class.</description><subject>Afterglows</subject><subject>Astronomy data analysis</subject><subject>Astrophysics</subject><subject>Binary stars</subject><subject>Classification</subject><subject>Classification schemes</subject><subject>Emission</subject><subject>Fluence</subject><subject>Galaxies</subject><subject>Gamma ray astronomy</subject><subject>Gamma ray bursts</subject><subject>Gamma rays</subject><subject>Machine learning</subject><subject>Massive stars</subject><subject>Subgroups</subject><subject>Supervised learning</subject><issn>0004-637X</issn><issn>1538-4357</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>O3W</sourceid><sourceid>DOA</sourceid><recordid>eNp1kc1v2zAMxYWiA5Z2ve8ooD3OrWR92Dp2RZcFyNCizYDdBMqiEwWJ7UlOh_z3c-ohu7QngsR7PxKPhHzm7FqUsrjhSpSZFKq4Ac8EVidkchydkgljTGZaFL8-krOU1oc2N2ZCFjOPTR_qfWiWtF8hfVztU6hgQx9iWIaGtjWdwnYL2RPs6dddTH2if0K_os-7DuNLSOjpD6hWoUE6R4jNAPpEPtSwSXjxr56Tn9_uF3ffs_nDdHZ3O88qKVWfFYg-r7jzUgsAxmpUnDtTuLxw3HBAxlErKLxXZa5F6UCUXnkG2ivwUopzMhu5voW17WLYQtzbFoJ9HbRxaSH2odqg1U6jEVxrV9RS5AYkaOVc5Y1EKRgbWJcjq4vt7x2m3q7bXWyG821emiFhzY0YVGxUVbFNKWJ93MqZPfzBHkK3h9Dt-IfBcjVaQtv9Z0K3tkYZy62UtvP1IPvyhuxd6l_NFJXa</recordid><startdate>20231201</startdate><enddate>20231201</enddate><creator>Luo, Jia-Wei</creator><creator>Wang, Fei-Fei</creator><creator>Zhu-Ge, Jia-Ming</creator><creator>Li, Ye</creator><creator>Zou, Yuan-Chuan</creator><creator>Zhang, Bing</creator><general>The American Astronomical Society</general><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TG</scope><scope>8FD</scope><scope>H8D</scope><scope>KL.</scope><scope>L7M</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9642-9682</orcidid><orcidid>https://orcid.org/0000-0002-5400-3261</orcidid><orcidid>https://orcid.org/0000-0002-9725-2524</orcidid></search><sort><creationdate>20231201</creationdate><title>Identifying the Physical Origin of Gamma-Ray Bursts with Supervised Machine Learning</title><author>Luo, Jia-Wei ; Wang, Fei-Fei ; Zhu-Ge, Jia-Ming ; Li, Ye ; Zou, Yuan-Chuan ; Zhang, Bing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c445t-7eed2c1bd463aa00fe511b97b27b191ae01e65a7dd582638ba38d5d0a6d5ad443</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Afterglows</topic><topic>Astronomy data analysis</topic><topic>Astrophysics</topic><topic>Binary stars</topic><topic>Classification</topic><topic>Classification schemes</topic><topic>Emission</topic><topic>Fluence</topic><topic>Galaxies</topic><topic>Gamma ray astronomy</topic><topic>Gamma ray bursts</topic><topic>Gamma rays</topic><topic>Machine learning</topic><topic>Massive stars</topic><topic>Subgroups</topic><topic>Supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Jia-Wei</creatorcontrib><creatorcontrib>Wang, Fei-Fei</creatorcontrib><creatorcontrib>Zhu-Ge, Jia-Ming</creatorcontrib><creatorcontrib>Li, Ye</creatorcontrib><creatorcontrib>Zou, Yuan-Chuan</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><collection>IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>The Astrophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Jia-Wei</au><au>Wang, Fei-Fei</au><au>Zhu-Ge, Jia-Ming</au><au>Li, Ye</au><au>Zou, Yuan-Chuan</au><au>Zhang, Bing</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying the Physical Origin of Gamma-Ray Bursts with Supervised Machine Learning</atitle><jtitle>The Astrophysical journal</jtitle><stitle>APJ</stitle><addtitle>Astrophys. J</addtitle><date>2023-12-01</date><risdate>2023</risdate><volume>959</volume><issue>1</issue><spage>44</spage><pages>44-</pages><issn>0004-637X</issn><eissn>1538-4357</eissn><abstract>The empirical classification of gamma-ray bursts (GRBs) into long and short GRBs based on their durations is already firmly established. This empirical classification is generally linked to the physical classification of GRBs originating from compact binary mergers and GRBs originating from massive star collapses, or Type I and II GRBs, with the majority of short GRBs belonging to Type I and the majority of long GRBs belonging to Type II. However, there is a significant overlap in the duration distributions of long and short GRBs. Furthermore, some intermingled GRBs, i.e., short-duration Type II and long-duration Type I GRBs, have been reported. A multiparameter classification scheme of GRBs is evidently needed. In this paper, we seek to build such a classification scheme with supervised machine-learning methods, chiefly XGBoost . We utilize the GRB Big Table and Greiner’s GRB catalog and divide the input features into three subgroups: prompt emission, afterglow, and host galaxy. We find that the prompt emission subgroup performs the best in distinguishing between Type I and II GRBs. We also find the most important distinguishing features in prompt emission to be T 90 , the hardness ratio, and fluence. After building the machine-learning model, we apply it to the currently unclassified GRBs to predict their probabilities of being either GRB class, and we assign the most probable class of each GRB to be its possible physical class.</abstract><cop>Philadelphia</cop><pub>The American Astronomical Society</pub><doi>10.3847/1538-4357/ad03ec</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0002-9642-9682</orcidid><orcidid>https://orcid.org/0000-0002-5400-3261</orcidid><orcidid>https://orcid.org/0000-0002-9725-2524</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0004-637X
ispartof The Astrophysical journal, 2023-12, Vol.959 (1), p.44
issn 0004-637X
1538-4357
language eng
recordid cdi_proquest_journals_2898476193
source IOP Publishing Free Content; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Afterglows
Astronomy data analysis
Astrophysics
Binary stars
Classification
Classification schemes
Emission
Fluence
Galaxies
Gamma ray astronomy
Gamma ray bursts
Gamma rays
Machine learning
Massive stars
Subgroups
Supervised learning
title Identifying the Physical Origin of Gamma-Ray Bursts with Supervised Machine Learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T08%3A59%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20the%20Physical%20Origin%20of%20Gamma-Ray%20Bursts%20with%20Supervised%20Machine%20Learning&rft.jtitle=The%20Astrophysical%20journal&rft.au=Luo,%20Jia-Wei&rft.date=2023-12-01&rft.volume=959&rft.issue=1&rft.spage=44&rft.pages=44-&rft.issn=0004-637X&rft.eissn=1538-4357&rft_id=info:doi/10.3847/1538-4357/ad03ec&rft_dat=%3Cproquest_iop_j%3E2898476193%3C/proquest_iop_j%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898476193&rft_id=info:pmid/&rft_doaj_id=oai_doaj_org_article_6b6e93166b7f4329a4a65bbcd94e4300&rfr_iscdi=true