Optimization of calcium carbide residue utilization for producing high‐quality calcium carbonate
In light of the current situation where the utilization of calcium carbide slag yields low profits but holds significant potential for reducing carbon emissions, ammonium acetate was employed to leach calcium carbide slag. It also played a crucial role in regulating the products of indirect carbon d...
Gespeichert in:
Veröffentlicht in: | Greenhouse gases: science and technology 2023-12, Vol.13 (6), p.814-828 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 828 |
---|---|
container_issue | 6 |
container_start_page | 814 |
container_title | Greenhouse gases: science and technology |
container_volume | 13 |
creator | Yang, Yuhang Li, Wenxiu Xun, Zhiwei Yi, Zhenwei Wang, Tao Yu, Zitao Huang, Yan Gu, Yongzheng |
description | In light of the current situation where the utilization of calcium carbide slag yields low profits but holds significant potential for reducing carbon emissions, ammonium acetate was employed to leach calcium carbide slag. It also played a crucial role in regulating the products of indirect carbon dioxide carbonation when mixed with glycine and lye. Ammonium acetate's significance underscores its dual role in both the leaching and carbonation processes. This process yielded calcium carbonate with particle sizes smaller than 100 nm, with a purity of 98% and a single vaterite phase. The calcium carbide residue demonstrated an impressive CO2 uptake rate of 23.5%. Ammonium acetate exhibited an efficiency of 79.2% as a leaching agent. The ammonium acetate method demonstrated enhanced environmental friendliness and facilitated a more efficient carbon uptake rate of 23.5% compared to conventional indirect methods. Furthermore, the addition of lye, glycine, and ammonium acetate effectively extended the nucleation time of the calcium carbonate crystals and induced the formation of more vaterite intermediates with smaller particle sizes. The influence mechanism of compound additives on the carbonation reaction was revealed through kinetic analysis and molecular dynamics. This innovative approach offers a promising avenue for simultaneously treating solid waste and reducing CO2 emission. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/ghg.2245 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2898403597</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2898403597</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3285-214bad94b7e07d1f505472d039778588a5f7c45afda9cca0419e704ba434930f3</originalsourceid><addsrcrecordid>eNp1kM1KAzEUhYMoWLTgIwy4cTM1kx-SLKVoKxS60XXIZJJpynTSJhOkrnwEn9EnMbUKuvBuzl1859zLAeCqgpMKQnTbrtoJQoSegBGqKCoxZ_z0134OxjGuYR4CEYNsBOrldnAb96oG5_vC20KrTru0yRpq15gimOiaZIo0uO4Hsz4U2-CbpF3fFivXrj7e3ndJdW7Y_wnwvRrMJTizqotm_K0X4Pnh_mk6LxfL2eP0blFqjDgtUUVq1QhSMwNZU1kKKWGogVgwxinnilqmCVW2UUJrBUklDIPZQzARGFp8Aa6Pufm1XTJxkGufQp9PSsQFJxBTwTJ1c6R08DEGY-U2uI0Ke1lBeShR5hLlocSMTo7oi-vM_l9OzuYz_GX4BCyxdI8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2898403597</pqid></control><display><type>article</type><title>Optimization of calcium carbide residue utilization for producing high‐quality calcium carbonate</title><source>Access via Wiley Online Library</source><creator>Yang, Yuhang ; Li, Wenxiu ; Xun, Zhiwei ; Yi, Zhenwei ; Wang, Tao ; Yu, Zitao ; Huang, Yan ; Gu, Yongzheng</creator><creatorcontrib>Yang, Yuhang ; Li, Wenxiu ; Xun, Zhiwei ; Yi, Zhenwei ; Wang, Tao ; Yu, Zitao ; Huang, Yan ; Gu, Yongzheng</creatorcontrib><description>In light of the current situation where the utilization of calcium carbide slag yields low profits but holds significant potential for reducing carbon emissions, ammonium acetate was employed to leach calcium carbide slag. It also played a crucial role in regulating the products of indirect carbon dioxide carbonation when mixed with glycine and lye. Ammonium acetate's significance underscores its dual role in both the leaching and carbonation processes. This process yielded calcium carbonate with particle sizes smaller than 100 nm, with a purity of 98% and a single vaterite phase. The calcium carbide residue demonstrated an impressive CO2 uptake rate of 23.5%. Ammonium acetate exhibited an efficiency of 79.2% as a leaching agent. The ammonium acetate method demonstrated enhanced environmental friendliness and facilitated a more efficient carbon uptake rate of 23.5% compared to conventional indirect methods. Furthermore, the addition of lye, glycine, and ammonium acetate effectively extended the nucleation time of the calcium carbonate crystals and induced the formation of more vaterite intermediates with smaller particle sizes. The influence mechanism of compound additives on the carbonation reaction was revealed through kinetic analysis and molecular dynamics. This innovative approach offers a promising avenue for simultaneously treating solid waste and reducing CO2 emission. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd.</description><identifier>ISSN: 2152-3878</identifier><identifier>EISSN: 2152-3878</identifier><identifier>DOI: 10.1002/ghg.2245</identifier><language>eng</language><publisher>Chichester: Wiley Subscription Services, Inc</publisher><subject>Acetic acid ; additive ; Additives ; Ammonium ; Ammonium acetate ; calcium carbide residue ; Calcium carbonate ; Carbides ; Carbon dioxide ; Carbon dioxide emissions ; Carbonation ; CO2 utilization ; Crystals ; Emissions control ; Glycine ; Intermediates ; Leaching ; mineralization ; Molecular dynamics ; Nucleation ; Particle size ; Residues ; Slag ; Solid waste treatment ; Solid wastes</subject><ispartof>Greenhouse gases: science and technology, 2023-12, Vol.13 (6), p.814-828</ispartof><rights>2023 Society of Chemical Industry and John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3285-214bad94b7e07d1f505472d039778588a5f7c45afda9cca0419e704ba434930f3</citedby><cites>FETCH-LOGICAL-c3285-214bad94b7e07d1f505472d039778588a5f7c45afda9cca0419e704ba434930f3</cites><orcidid>0000-0002-0535-7821</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fghg.2245$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fghg.2245$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Yang, Yuhang</creatorcontrib><creatorcontrib>Li, Wenxiu</creatorcontrib><creatorcontrib>Xun, Zhiwei</creatorcontrib><creatorcontrib>Yi, Zhenwei</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Yu, Zitao</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Gu, Yongzheng</creatorcontrib><title>Optimization of calcium carbide residue utilization for producing high‐quality calcium carbonate</title><title>Greenhouse gases: science and technology</title><description>In light of the current situation where the utilization of calcium carbide slag yields low profits but holds significant potential for reducing carbon emissions, ammonium acetate was employed to leach calcium carbide slag. It also played a crucial role in regulating the products of indirect carbon dioxide carbonation when mixed with glycine and lye. Ammonium acetate's significance underscores its dual role in both the leaching and carbonation processes. This process yielded calcium carbonate with particle sizes smaller than 100 nm, with a purity of 98% and a single vaterite phase. The calcium carbide residue demonstrated an impressive CO2 uptake rate of 23.5%. Ammonium acetate exhibited an efficiency of 79.2% as a leaching agent. The ammonium acetate method demonstrated enhanced environmental friendliness and facilitated a more efficient carbon uptake rate of 23.5% compared to conventional indirect methods. Furthermore, the addition of lye, glycine, and ammonium acetate effectively extended the nucleation time of the calcium carbonate crystals and induced the formation of more vaterite intermediates with smaller particle sizes. The influence mechanism of compound additives on the carbonation reaction was revealed through kinetic analysis and molecular dynamics. This innovative approach offers a promising avenue for simultaneously treating solid waste and reducing CO2 emission. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd.</description><subject>Acetic acid</subject><subject>additive</subject><subject>Additives</subject><subject>Ammonium</subject><subject>Ammonium acetate</subject><subject>calcium carbide residue</subject><subject>Calcium carbonate</subject><subject>Carbides</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide emissions</subject><subject>Carbonation</subject><subject>CO2 utilization</subject><subject>Crystals</subject><subject>Emissions control</subject><subject>Glycine</subject><subject>Intermediates</subject><subject>Leaching</subject><subject>mineralization</subject><subject>Molecular dynamics</subject><subject>Nucleation</subject><subject>Particle size</subject><subject>Residues</subject><subject>Slag</subject><subject>Solid waste treatment</subject><subject>Solid wastes</subject><issn>2152-3878</issn><issn>2152-3878</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kM1KAzEUhYMoWLTgIwy4cTM1kx-SLKVoKxS60XXIZJJpynTSJhOkrnwEn9EnMbUKuvBuzl1859zLAeCqgpMKQnTbrtoJQoSegBGqKCoxZ_z0134OxjGuYR4CEYNsBOrldnAb96oG5_vC20KrTru0yRpq15gimOiaZIo0uO4Hsz4U2-CbpF3fFivXrj7e3ndJdW7Y_wnwvRrMJTizqotm_K0X4Pnh_mk6LxfL2eP0blFqjDgtUUVq1QhSMwNZU1kKKWGogVgwxinnilqmCVW2UUJrBUklDIPZQzARGFp8Aa6Pufm1XTJxkGufQp9PSsQFJxBTwTJ1c6R08DEGY-U2uI0Ke1lBeShR5hLlocSMTo7oi-vM_l9OzuYz_GX4BCyxdI8</recordid><startdate>202312</startdate><enddate>202312</enddate><creator>Yang, Yuhang</creator><creator>Li, Wenxiu</creator><creator>Xun, Zhiwei</creator><creator>Yi, Zhenwei</creator><creator>Wang, Tao</creator><creator>Yu, Zitao</creator><creator>Huang, Yan</creator><creator>Gu, Yongzheng</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SN</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><orcidid>https://orcid.org/0000-0002-0535-7821</orcidid></search><sort><creationdate>202312</creationdate><title>Optimization of calcium carbide residue utilization for producing high‐quality calcium carbonate</title><author>Yang, Yuhang ; Li, Wenxiu ; Xun, Zhiwei ; Yi, Zhenwei ; Wang, Tao ; Yu, Zitao ; Huang, Yan ; Gu, Yongzheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3285-214bad94b7e07d1f505472d039778588a5f7c45afda9cca0419e704ba434930f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Acetic acid</topic><topic>additive</topic><topic>Additives</topic><topic>Ammonium</topic><topic>Ammonium acetate</topic><topic>calcium carbide residue</topic><topic>Calcium carbonate</topic><topic>Carbides</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide emissions</topic><topic>Carbonation</topic><topic>CO2 utilization</topic><topic>Crystals</topic><topic>Emissions control</topic><topic>Glycine</topic><topic>Intermediates</topic><topic>Leaching</topic><topic>mineralization</topic><topic>Molecular dynamics</topic><topic>Nucleation</topic><topic>Particle size</topic><topic>Residues</topic><topic>Slag</topic><topic>Solid waste treatment</topic><topic>Solid wastes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yang, Yuhang</creatorcontrib><creatorcontrib>Li, Wenxiu</creatorcontrib><creatorcontrib>Xun, Zhiwei</creatorcontrib><creatorcontrib>Yi, Zhenwei</creatorcontrib><creatorcontrib>Wang, Tao</creatorcontrib><creatorcontrib>Yu, Zitao</creatorcontrib><creatorcontrib>Huang, Yan</creatorcontrib><creatorcontrib>Gu, Yongzheng</creatorcontrib><collection>CrossRef</collection><collection>Ecology Abstracts</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><jtitle>Greenhouse gases: science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yang, Yuhang</au><au>Li, Wenxiu</au><au>Xun, Zhiwei</au><au>Yi, Zhenwei</au><au>Wang, Tao</au><au>Yu, Zitao</au><au>Huang, Yan</au><au>Gu, Yongzheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optimization of calcium carbide residue utilization for producing high‐quality calcium carbonate</atitle><jtitle>Greenhouse gases: science and technology</jtitle><date>2023-12</date><risdate>2023</risdate><volume>13</volume><issue>6</issue><spage>814</spage><epage>828</epage><pages>814-828</pages><issn>2152-3878</issn><eissn>2152-3878</eissn><abstract>In light of the current situation where the utilization of calcium carbide slag yields low profits but holds significant potential for reducing carbon emissions, ammonium acetate was employed to leach calcium carbide slag. It also played a crucial role in regulating the products of indirect carbon dioxide carbonation when mixed with glycine and lye. Ammonium acetate's significance underscores its dual role in both the leaching and carbonation processes. This process yielded calcium carbonate with particle sizes smaller than 100 nm, with a purity of 98% and a single vaterite phase. The calcium carbide residue demonstrated an impressive CO2 uptake rate of 23.5%. Ammonium acetate exhibited an efficiency of 79.2% as a leaching agent. The ammonium acetate method demonstrated enhanced environmental friendliness and facilitated a more efficient carbon uptake rate of 23.5% compared to conventional indirect methods. Furthermore, the addition of lye, glycine, and ammonium acetate effectively extended the nucleation time of the calcium carbonate crystals and induced the formation of more vaterite intermediates with smaller particle sizes. The influence mechanism of compound additives on the carbonation reaction was revealed through kinetic analysis and molecular dynamics. This innovative approach offers a promising avenue for simultaneously treating solid waste and reducing CO2 emission. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd.</abstract><cop>Chichester</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/ghg.2245</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-0535-7821</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2152-3878 |
ispartof | Greenhouse gases: science and technology, 2023-12, Vol.13 (6), p.814-828 |
issn | 2152-3878 2152-3878 |
language | eng |
recordid | cdi_proquest_journals_2898403597 |
source | Access via Wiley Online Library |
subjects | Acetic acid additive Additives Ammonium Ammonium acetate calcium carbide residue Calcium carbonate Carbides Carbon dioxide Carbon dioxide emissions Carbonation CO2 utilization Crystals Emissions control Glycine Intermediates Leaching mineralization Molecular dynamics Nucleation Particle size Residues Slag Solid waste treatment Solid wastes |
title | Optimization of calcium carbide residue utilization for producing high‐quality calcium carbonate |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A38%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optimization%20of%20calcium%20carbide%20residue%20utilization%20for%20producing%20high%E2%80%90quality%20calcium%20carbonate&rft.jtitle=Greenhouse%20gases:%20science%20and%20technology&rft.au=Yang,%20Yuhang&rft.date=2023-12&rft.volume=13&rft.issue=6&rft.spage=814&rft.epage=828&rft.pages=814-828&rft.issn=2152-3878&rft.eissn=2152-3878&rft_id=info:doi/10.1002/ghg.2245&rft_dat=%3Cproquest_cross%3E2898403597%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2898403597&rft_id=info:pmid/&rfr_iscdi=true |